Skip to main content
Log in

Investigations on the Barium-Bearing Magnetite Concentrate Roasted in Air

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To expand the application of barium-bearing magnetite in pellets, the oxidation induration mechanism for barium-bearing magnetite concentrate pellets with the BaSO4 contents from 0 to 8wt pct as an additive was investigated in this paper. The green pellets were preheated at 900 °C for 10min and roasted at 1200 °C for 20min.The XRD, SEM-EDS, and TG were used to systematically analyze the phase composition, microstructure, elemental distribution, and oxidation behavior of the pellets with the different contents of BaSO4. The results indicated that BaSO4 reacted with SiO2 and Fe2O3 to form BaSiO3 and BaFe2O4, respectively. When the content of BaSO4 was less than 2 wt pct, the Ba-bearing silicate filled the hematite grains, which promoted the induration process of the pellets. With a further increase in the amount of BaSO4, the growth of hematite grains was suppressed by the Ba-bearing silicate. In addition, the BaFe2O4 distributed along the hematite grains’ boundaries, and the SO2 that decomposed from BaSO4 separated out from the pellets, which led to a decrease of compressive strength. Thereby, the compressive strength decreased, the porosity increased. A schematic of the oxidation induration mechanism is also presented based on the experimental results, providing the theoretical and technical foundations for the use of Ba-bearing oxide minerals in pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Dong, H. Zhang, T. Fujita, S. Ohnishi, H. Li, M. Fujii, and H. Dong: J. Clean. Prod., 2013, vol. 59, pp. 226–38.

    Article  Google Scholar 

  2. X. Liu and Z. Yuan: J. Clean. Prod., 2015, vol. 112, pp. 1292–1301.

    Article  Google Scholar 

  3. Z.G. Pang, X.D. Xing, J.L. Zheng, Y.L. Du, S. Ren, and M. Lv: J. Non-Cryst. Solids., 2021, vol. 571, p. 121071.

    Article  CAS  Google Scholar 

  4. H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, and J. Tang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 3–21.

    Google Scholar 

  5. D.D. Zhou, S.S. Cheng, Y.S. Wang, and X. Jiang: Ironmak. Steelmak., 2017, vol. 8, pp. 1–7.

    Google Scholar 

  6. Y.J. Wang, H.B. Zuo, and J. Zhao: Ironmak. Steelmak., 2020, vol. 5, pp. 1–10.

    CAS  Google Scholar 

  7. K. He and L. Wang: Renew. Sustain. Energy Rev., 2017, vol. 70, pp. 1022–39.

    Article  Google Scholar 

  8. Z. Qi, L. Yu, Y. Shen, and D. Hui: J. Clean. Prod., 2019, vol. 222, pp. 823–34.

    Article  Google Scholar 

  9. Q. Zhang, Y.J. Wang, W. Zhang, and J. Xu: Resour. Conserv. Recycl., 2019, vol. 147, pp. 67–84.

    Article  Google Scholar 

  10. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak. Steelmak., 2016, vol. 44, pp. 1–10.

    Google Scholar 

  11. D. Zhu, Y. Xue, J. Pan, C. Yang, and X. Huang: Powder Technol., 2020, vol. 367, pp. 616–31.

    Article  CAS  Google Scholar 

  12. R. Paunova: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 633–38.

    Article  CAS  Google Scholar 

  13. S. Wang, Y. Guo, F. Zheng, F. Chen, and L. Yang: Powder Technol., 2020, vol. 376, pp. 126–35.

    Article  CAS  Google Scholar 

  14. T. Hu and X.W. Lv: Steel Res. Int., 2015, vol. 87, pp. 494–500.

    Article  Google Scholar 

  15. W. Li, G. Fu, M. Chu, and M. Zhu: Powder Technol., 2020, vol. 360, pp. 555–61.

    Article  CAS  Google Scholar 

  16. W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak. Steelmak., 2017, vol. 141, pp. 1–6.

    CAS  Google Scholar 

  17. R.Q. Zeng, W. Li, N. Wang, and G.Q. Fu: ISIJ Int., 2020, vol. 60, pp. 2199–2205.

    Article  CAS  Google Scholar 

  18. M. Iljana, A. Kemppainen, T. Paananen, O. Mattila, E. Pisilä, M. Kondrakov, and T. Fabritius: Int. J. Miner. Process., 2015, vol. 141, pp. 34–43.

    Article  CAS  Google Scholar 

  19. J. Li, H.F. An, W.X. Liu, A.M. Yang, and M.S. Chu: J. Iron Steel Res. Int., 2020, vol. 3, pp. 9–27.

    Google Scholar 

  20. W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 391–98.

    Article  CAS  Google Scholar 

  21. G.Q. Fu, W. Li, M. Chu, and M. Zhu: Metall. Mater. Trans. B, 2019, vol. 51B, pp. 114–23.

    Google Scholar 

  22. R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, and M.Y. Zhu: ISIJ Int., 2021, vol. 61, pp. 100–07.

    Article  CAS  Google Scholar 

  23. X.X. Xue, T. Jiang, P. Duan, and G.J. Chen: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1713–26.

    Google Scholar 

  24. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak. Steelmak., 2019, vol. 47, pp. 1–7.

    Article  Google Scholar 

  25. D.Q. Zhu, T. Chun, J. Pan, and J. Zhang: Int. J. Miner. Process., 2013, vol. 125, pp. 51–60.

    Article  CAS  Google Scholar 

  26. S. Wang, Y.F. Guo, L. Yang, and G.H. Zheng: Powder Technol., 2018, vol. 332, pp. 188–96.

    Article  CAS  Google Scholar 

  27. I. Wilkomirsky, R. Parra, F. Parada, E. Balladares, E. Seguel, J. Etcheverry, and R. Diaz: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1540–51.

    Article  Google Scholar 

  28. F. Zhang, D.Q. Zhu, J. Pan, G.Q. Zheng, and M.J. Xu: J. Iron. Steel Res. Int., 2020, vol. 27, pp. 770–81.

    Article  CAS  Google Scholar 

  29. R.K. Subhnit, N. Deepak, D. Nilima, D. Nikhil, and R.S. Swagat: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1449–61.

    Article  Google Scholar 

  30. I. Wilkomirsky, P. Roberto, P. Fernando, B. Eduardo, E. Jorge, and D. Rodrigo: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2030–38.

    Article  Google Scholar 

  31. J. Li, H.F. An, W.X. Liu, A.M. Yang, and M.S. Chu: J. Iron. Steel Res. Int., 2020, vol. 27, pp. 239–47.

    Article  CAS  Google Scholar 

  32. T.K. Sandeep Kumar, N.N. Viswanathan, H. Ahmed, A. Dahlin, C. Andersson, and B. Bjorkman: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 62–172.

    Google Scholar 

  33. P. Zhou, F. Zhou, Y. Sun, M. Zhang, and B.Q. Li: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 799–808.

    Article  Google Scholar 

  34. T.K. Sandeep Kumar, N.N. Viswanathan, H. Ahmed, A. Dahlin, C. Andersson, and B. Bjorkman: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 150–61.

    Article  Google Scholar 

  35. J.T. Ju, C.M. Tang, G.H. Ji, X.D. Xing, G.Q. Zhao, X.T. Jiang, and F.L. Lu: J. Iron Steel Res. Int., 2021, https://doi.org/10.1007/s42243-021-00626-x.

    Article  Google Scholar 

  36. P.S. Hlabela, H.W.J.P. Neomagus, F.B. Waanders, and O.S.L. Bruinsma: Thermochim. Acta., 2010, vol. 498, pp. 67–70.

    Article  CAS  Google Scholar 

  37. J.T. Ju, C.M. Tang, X.D. Xing, S. Ren, and G.H. Ji: Metall. Res. Technol., 2020, vol. 117, p. 207.

    Article  CAS  Google Scholar 

  38. J.L. Zhang, Z.Y. Wang, X.D. Xing, and Z.J. Liu: J. Miner. Metall. Mater., 2014, vol. 21, pp. 339–44.

    CAS  Google Scholar 

  39. C.C. Yang, D.Q. Zhu, J. Pan, and X.B. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1–12.

    Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Nature Science Foundation of China [Grant No.52174325(2019M663932XB)] and Natural Science Basic Research Program of Shaanxi (Program No. 2019JLP-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Xing.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Jt., Ma, K., Xing, XD. et al. Investigations on the Barium-Bearing Magnetite Concentrate Roasted in Air. Metall Mater Trans B 53, 1495–1503 (2022). https://doi.org/10.1007/s11663-022-02459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02459-9

Navigation