Skip to main content
Log in

The Influence of Liquid–Solid Interface Position and Shape on the Electromagnetic Forcing Parameter During Horizontal Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The forcing parameter is an important value for determining the solidification conditions under electromagnetic impact. This parameter tends to change and affect the solidification conditions. The aim of this work is to investigate the influence of the liquid–solid interface position and deformation on the forcing parameter. Electromagnetic analysis by the finite element method, validated experimentally, was used as the main research tool. Horizontal solidification in the presence of a traveling magnetic field installation was chosen as the experimental setup. Various interface deformations were investigated, as well as its propagation. As a result of the calculation, the electromagnetic (EM) forcing parameter functions were obtained. It was determined that the liquid–solid interface propagation causes significant attenuation of the forcing parameter, as well as interface slope. The results were analyzed and approximated by analytical functions. These functions can be easily used to determine values for various solidification conditions and stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.C. Flemings, Metall. Trans. 5, 2121–34 (1974)

    Article  CAS  Google Scholar 

  2. V. Metan, K. Eigenfeld, D. Räbiger, M. Leonhardt, S. Eckert, J. Alloys Compd. 487, 163–72 (2009)

    Article  CAS  Google Scholar 

  3. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, Y. Fautrelle, Metall. Mater. Trans. B 41, 193–208 (2010)

    Article  Google Scholar 

  4. S. Eckert, P.A. Nikrityuk, B. Willers, D. Räbiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt, K. Eckert, Eur. Phys. J. Spec. Top. 220, 123–37 (2013)

    Article  CAS  Google Scholar 

  5. L. Hachani, K. Zaidat, Y. Fautrelle, Int. J. Heat Mass Transf. 85, 438–54 (2015)

    Article  CAS  Google Scholar 

  6. Q. Li, J. Shen, L. Qin, Y. Xiong, X. Yue, J. Mater. Process. Technol. 274, 116308 (2019)

    Article  CAS  Google Scholar 

  7. J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, T.J. Li, Acta Mater. 72, 57–66 (2014)

    Article  CAS  Google Scholar 

  8. M. Dubke, K.-H. Tacke, K.-H. Spitzer, K. Schwerdtfeger, Metall. Trans. B 19, 581–93 (1988)

    Article  Google Scholar 

  9. M. Dubke, K.-H. Tacke, K.-H. Spitzer, K. Schwerdtfeger, Metall. Trans. B 19, 595–602 (1988)

    Article  Google Scholar 

  10. I. Grants, G. Gerbeth, J. Cryst. Growth 269, 630–8 (2004)

    Article  CAS  Google Scholar 

  11. P.A. Nikrityuk, Computational Thermo-Fluid Dynamics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011), pp. 34–8

    Book  Google Scholar 

  12. P.A. Nikrityuk, K. Eckert, R. Grundmann, Int. J. Heat Mass Transf. 49, 1501–15 (2006)

    Article  CAS  Google Scholar 

  13. M.H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy, Int. J. Heat Fluid Flow 69, 9–22 (2018)

    Article  Google Scholar 

  14. G. Losev, E. Shvydkiy, I. Sokolov, A. Pavlinov, I. Kolesnichenko, Magnetohydrodynamics 55, 107–14 (2019)

    Article  Google Scholar 

  15. G. Losev, I. Kolesnichenko, J. Cryst. Growth 528, 125249 (2019)

    Article  CAS  Google Scholar 

  16. M. Kaltenbacher, R. Landes, R. Lerch, IEEE Trans. Magn. 33, 1646–9 (1997)

    Article  Google Scholar 

  17. E. Shvydkiy, I. Kolesnichenko, IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 777–79 (2018)

  18. O. Ben-David, A. Levy, B. Mikhailovich, A. Azulay, Int. J. Heat Mass Transf. 81, 373–82 (2015)

    Article  Google Scholar 

  19. Denisov, V. Dolgikh, S. Khripchenko, I. Kolesnichenko, and I. Nikulin: Magnetohydrodynamics, 2014, vol. 50, pp. 407–22.

  20. D. Musaeva, E. Baake, A. Köppen, P. Vontobel, Magnetohydrodynamics 53, 583–94 (2017)

    Article  Google Scholar 

  21. E. Shvydkiy, E. Baake, D. Köppen, Metals (Basel) 10, 532 (2020)

    Article  Google Scholar 

  22. K. Dadzis, G. Lukin, D. Meier, P. Bönisch, L. Sylla, O. Pätzold, J. Cryst. Growth 445, 90–100 (2016)

    Article  CAS  Google Scholar 

  23. I. Hamzaoui, S. Millet, V. Botton, A. Benzaoui, D. Henry, L. Hachani, R. Boussaa, K. Zaidat, Y. Fautrelle, Int. J. Therm. Sci. 140, 167–83 (2019)

    Article  CAS  Google Scholar 

  24. E. Shvidkiy, B. Sokunov, S. Bichkov, I. Sokolov, J. Electrotech. 20–6 (2018)

  25. G.Z. Gershuni, A.K. Kolesinkov, J.C. Legros, B.I. Myznikova, J. Fluid Mech. 330, 251–69 (1997)

    Article  CAS  Google Scholar 

  26. R. Speiser: The Physical Properties of Liquid Metals, vol. 114, 1989, p. 232

  27. K. Dadzis, K. Niemietz, O. Pätzold, U. Wunderwald, J. Friedrich, J. Cryst. Growth 372, 145–56 (2013)

    Article  CAS  Google Scholar 

  28. K. Dadzis, J. Ehrig, K. Niemietz, O. Pätzold, U. Wunderwald, J. Friedrich, J. Cryst. Growth 333, 7–15 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shvydkiy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The reported study was funded by RFBR, Project Number 19-38-90236. The authors are grateful to Eltishchev V. for the validation experiments.

Manusript submitted September 2, 2020; accepted February 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvydkiy, E., Sokolov, I., Kolesnichenko, I. et al. The Influence of Liquid–Solid Interface Position and Shape on the Electromagnetic Forcing Parameter During Horizontal Solidification. Metall Mater Trans B 52, 1997–2007 (2021). https://doi.org/10.1007/s11663-021-02165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02165-y

Navigation