Skip to main content
Log in

Microstructure and Porosity Evolution During the Reduction, Softening and Melting of Iron-Bearing Materials

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The performance of the blast furnace is strongly affected by the position and thickness of the cohesive zone, which is largely influenced by the high-temperature properties of the iron-bearing materials. During its reduction, softening and melting, ferrous materials undergo major microstructure changes and its understanding is essential to develop new raw-materials, technologies, and models. In this study, the behavior of reduction, softening and melting of a lump ore, an acid pellet, and a sinter was characterized by softening and melting (S&M) experiments. After that, to access the samples’ structural transformations, interrupted S&M tests were carried out up to four different conditions based on contraction and pressure loss levels. The obtained products were characterized according to its density (true and apparent), porosity (open, closed and total), phase composition by X-ray diffraction and microstructure (reflected light microscopy and electron scanning microscopy). From the S&M test results, three main regions of reduction were characterized, namely: solid/gas reduction, reduction retardation, and melting reduction. In the solid/gas reduction, samples open porosity increased, with reduction following the shrinking core model. On the region of reduction retardation, a sharp decrease in open porosity was identified together with the diminishing of the reduction rate, which occurred due to the iron shell porosity being clogged due to the slag transfer from the particles’ cores to its periphery. At the melting exudation region, reduction retardation ceased and exudation of the ferrous slag lead to a peak of reduction. The lower the reduction degree of the samples at this stage, the higher the consumption of carbon. Furthermore, at 10 pct contraction, a pseudo-globular wüstite structure interspersed with slag was observed for the pellet and sinter cores. At 50 pct contraction, the previous structure coalesced to form a globular shape wüstite in a well-connected slag matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P.F. Nogueira and R.J. Fruehan: Metall. Trans. B, 2004, vol. 35, pp. 829-838.

    Article  Google Scholar 

  2. M. Hayashi, K. Suzuki, Y. Maeda and T. Watanabe: ISIJ Int, 2015, vol. 55, pp. 1223-1231.

    Article  CAS  Google Scholar 

  3. T. Li, C. Sun, X. Liu, S. Song and Q. Wang: Ironmag. Steelmak., 2017, vol. 45, pp. 755-763.

    Article  Google Scholar 

  4. C.E. Loo, L. T. Matthews and D.P. O’dea: ISIJ Int, 2011, vol. 51, n. 6, pp. 930–38.

  5. A.K. Biswas: Principles of blast furnace iron making – theory and practice. Brisbane: Cootha Publishing House, 1981.

    Google Scholar 

  6. J. Sterneland and A.K. Lahiri: Ironmag. Steelmak., 1999, vol. 26, pp. 339-48.

    Article  CAS  Google Scholar 

  7. V.J. Ritz, H.A. Kortmann: in Ironmaking Conference Proceedings, 1998, pp. 1635–54.

  8. T. Bakker and R.H. Heerema: Ironmaking Conf. Proc., 1998, pp. 1597–1608.

  9. G. Clixby: Commission of the European Communities, 1987.

  10. P. Kaushik, R.J. Fruehan: Ironmaking Steelmaking, 2006, vol. 33, pp. 507-519.

    Article  CAS  Google Scholar 

  11. J. Small, A. Adema, K. Andreev and E. Zinngrebe: Metals, 2018, vol. 8, pp. 1-14.

    Article  Google Scholar 

  12. K. Higuchi, M. Naito, M. Nakano and Y. Takamoto. ISIJ Int., 2004, vol. 44, n. 12, pp. 2057-66.

    Article  CAS  Google Scholar 

  13. A-H. A. El-Geassy, M.I. Nasr, A.A. Omar, E-S.A. Mousa. ISIJ Int., 2008, vol. 48, no. 10, pp. 1359-1367.

    Article  CAS  Google Scholar 

  14. I. Shigaki, S. Shirouchi, K. Tokutake and N. Hasegawa: ISIJ Int, 1990, vol. 30, pp. 199-207.

    Article  Google Scholar 

  15. M.M. Hessien, Y. Kashiwaya, K. Ishii, M.I. Nasr and A.A. El-Geassy: Ironmag. Steelmak., 2008, vol. 35, n. 3, pp. 183-90.

    Article  CAS  Google Scholar 

  16. I.V. Flores, A.L. Silva, N.C. Heck, M.C. Bagatini: Metall. Mater. Trans. B. 2019.

  17. T. Nishimura, K. Higuchi, M. Naito and K. Kunitomo: ISIJ Int, 2011, vol. 51, pp. 1316-1321.

    Article  CAS  Google Scholar 

  18. J. Sterneland: Doctoral thesis, Royal Institute of Technology, Sweden, 2002, p. 233.

  19. S. Jursova, P. Pustejovska, S. Brozova: Alexandria Eng. J., 2018, vol. 57, pp. 1657-1664.

    Article  Google Scholar 

  20. R.C. Gupta: Theory and Laboratory Experiments in Ferrous Metallurgy. Delphi, PHI Learning Private Limited, 2015.

    Google Scholar 

  21. X. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmak. Steelmak., 2018.

  22. M. Iljana, A. Kemppainen, T. Paananen, O. Mattila, E. Pisilä, M. Kandrokov and T. Fabritius: Int. J. Miner. Process., 2015, vol. 141, pp. 34-43.

    Article  CAS  Google Scholar 

  23. L-H. Hsieh and K-C. L: Ironmaking Conference Proceedings, 1998, pp. 1623–32.

  24. B. Nandy, S. Chandra, D. Bhattacharjee and D. Ghosh: Ironmaking Steelmaking, 2006, vol. 33, n. 2, pp. 111-19.

    Article  CAS  Google Scholar 

  25. J. Liu, G. Cheng, Z. Liu, M. Chu and X. Xue: International Journal of Mineral Processing, 2015, v. 142, pp. 113-118.

    Article  CAS  Google Scholar 

  26. Z-G Liu, M-S Chu, H-T Wang, W. Zhao and X-X. Xue: Int. J. Miner. Metall. Mater. 2016, vol. 23, no. 1, pp. 25-32.

    Article  CAS  Google Scholar 

  27. X-W. An, J-S. Wang, R-Z, Lan, Y-H. Han and Q-G Xue: Journal of Iron and Steel Research, International. 2013, v. 20, n. 5, pp. 11-16.

    Article  CAS  Google Scholar 

  28. W. T. Guo, Q. G. Xue, Y. L. Liu, X. F. She and J. S. Wang.: Ironmak. Steelmak. 2016, vol. 43, no. 1, pp. 22-30.

    Article  CAS  Google Scholar 

  29. H. Hotta and Y. Yamaoka: ISIJ Transac., 1985, vol. 25, pp. 294-301.

    Article  CAS  Google Scholar 

  30. M. Guha, M. Sinha: ISIJ Int, 2015, vol. 55, n. 9, pp. 2033-2035.

    Article  CAS  Google Scholar 

  31. M. Iljana, A. Kemppainen, T. Paananen, O. Mattila, E-P. Heikkinen and T. Fabritius: ISIJ Int, 2016, vol. 56, n. 10, pp. 1705-1714.

    Article  CAS  Google Scholar 

  32. N.J. Busby, T.A.T. Fray and D.C. Goldring: Ironmak. Steelmak., 1994, vol. 21, pp. 229-36.

    CAS  Google Scholar 

  33. M. Geerdes and R. Chaigneau: International Congress on Science and Technology of Ironmaking. How iron ore melts in a blast furnace—Part 1. 2018, vol. 8.

  34. M. Geerdes and R. Chaigneau: International Congress on Science and Technology of Ironmaking. How iron ore melts in a blast furnace—Part 2. 2018, vol. 8,

  35. L.V. Bogdandy, H.-J. Engell: The reduction of iron ores: scientific basis and technology. Springer Science & Business media, Berlin, DE, 2013.

    Google Scholar 

  36. Kemppainen, K. Ohno, M. Iljana, O. Mattila, T. Paananen, E. Heikkinen, T. Maeda, K. Kunitomo and T. Fabritius: ISIJ Int, 2015, vol. 55, pp. 2039-2046.

    Article  CAS  Google Scholar 

  37. K. Inoue, T. Ikeda and T. Uenaka: Tetsu-to-Hagané, 1982, vol.68, pp. 2431-2440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to CAPES-PROEX, CNPq, and FAPEMIG for stimulating and supporting research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Vemdrame Flores.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 10, 2019; received February 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vemdrame Flores, I., Matos, O., Lima da Silva, A. et al. Microstructure and Porosity Evolution During the Reduction, Softening and Melting of Iron-Bearing Materials. Metall Mater Trans B 52, 1716–1738 (2021). https://doi.org/10.1007/s11663-021-02140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02140-7

Navigation