Skip to main content
Log in

Transient Simulations and Experiments on Compound Roll Produced by Electroslag Remelting Cladding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a comprehensive transient numerical model of electroslag remelting cladding process with dynamic mesh technology is simulated to study the effect of the applied power on the uniformity of melting layer depth along the height of the as-prepared compound roll. The multi-physics fields are solved by the ANSYS Parametric Design Language and Fluent simulation software. The simulation results show that the mandrel absorbs heat (Qmsi) from the slag pool and the melting layer is formed on the mandrel surface. A sufficient metallurgical bonding quality between the mandrel and the clad is confirmed by the close contact of the melting layer with the molten bath of the clad. In addition, the use of high and low power during the early and later stages, respectively, improves the uniformity of the melting layer depth along the height. When high power (235 kW) is applied during the early stage, the height of the compound roll without metallurgical bonding decreases to 52 mm. After the melting layer depth increases to 6 mm along the height, the power decreases to 187 kW. The slag temperature and Qmsi decreases rapidly, and consequently, the melting layer depth initially decreases and then slightly increases along the height. The melting layer depth is acceptable within height of 52 to 260 mm. The change tendency of the melting layer depth along the height of the compound roll obtained by the semi-industrial experiment is in agreement with the simulation results, proving the reliability of the process. Moreover, the results of tensile and Charpy impact tests indicate good metallurgical bonding quality. The process investigated in this paper is expected to be efficient for industrial production of the compound rolls with a uniform melting layer depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

E :

Electric field (V m−1)

B :

Magnetic flux density (T)

J (l, t):

Current density (A m−2)

l :

Location vector in space

\( \zeta \) :

Charge density (C m−1)

w :

Angular frequency (rad s−1)

f :

Frequency (Hz)

\( \varphi (\varvec{l}) \) :

Phase angle

\( \varvec{J}(\varvec{l}) \) :

Amplitude of current density (A m−2)

\( \varvec{J}_{\text{r}} \) :

Real part of the current (A m−2)

\( \varvec{J}_{\text{i}} \) :

Imaginary part of the current (A m−2)

t :

Time (s)

A :

Magnetic vector potential (wb m−1)

\( \mu \) :

Magnetic permeability (H m−1)

\( Q \) :

Volumetric Joule heating (J m−3)

σ :

Electrical conductivity (Ω−1 m−1)

F :

Lorentz force (N m−3)

\( \rho \) :

Density (kg m−3)

v :

Velocity (m s−1)

P :

Pressure (Pa)

\( \mu_{\text{eff}} \) :

Dynamic viscosity (Pa s)

\( \varvec{g} \) :

Gravitational acceleration (9.81 m s−2)

\( \beta \) :

Thermal expansion coefficient (K−1)

\( \rho_{0} \) :

Reference density (kg m−3)

\( T_{0} \) :

Reference temperature (K)

T :

Temperature (K)

h :

Enthalpy (J kg−1)

\( C_{\text{P}} \) :

Specific heat (J kg−1 K−1)

L :

Latent heat (J kg−1)

T l :

Liquidus temperature (K)

T s :

Solidus temperature (K)

f l :

Liquidus fraction

\( \lambda_{\text{eff}} \) :

Effective thermal conductivity (W m−1 K−1)

\( m_{\text{ELEC}} \) :

Melting rate (kg s−1)

\( V_{\text{CV}} \) :

Volume of control cell (m3)

Reference

  1. Y. Luan, N. Song, Y. Bai, X. Kang, D. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 536-41.

    Article  CAS  Google Scholar 

  2. T. Zhang, Q. Wang, X. Song, H. Fu: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 557-61.

    Article  CAS  Google Scholar 

  3. H.G. Fu, Q. Xiao, J. Xing: Ironmak. Steelmak., 2004, vol. 31, pp. 389-92.

    Article  CAS  Google Scholar 

  4. B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov: 42nd Mechanical Working and Steel Processing Conference Proceedings, Canada, 2000, pp. 647–51.

  5. W.M. Li, X. Geng, H.B. Li, G.S. Yi, H. Feng, Z.H. Jiang: J. Iron Steel Res, 2012, vol. 19, pp. 921-24.

    CAS  Google Scholar 

  6. Z.H. Jiang, Y.L. Cao, Y.W. Dong, D. Hou, H.B. Cao, J.X. Fan: Steel Res. Int., 2016, vol. 87, pp. 699-711.

    Article  CAS  Google Scholar 

  7. Y. Sano, T. Toshiyuki, M. Haga: ISIJ Int., 1992, vol. 32, pp. 1194-1201.

    Article  CAS  Google Scholar 

  8. M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurahashi, T. Kawakami, T. Kouga: ISIJ Int., 1992, vol. 32, pp. 1202-10.

    Article  CAS  Google Scholar 

  9. M. Hashimoto, T. Tanaka, T. Inoue, M. Yanashita, R. Kurahashi, R. Terakado: ISIJ Int., 2002, vol. 42, pp. 982-89.

    Article  CAS  Google Scholar 

  10. M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, Y. Kondo: ISIJ Int., 1992, vol. 32, pp. 1244-49.

    Article  CAS  Google Scholar 

  11. Y.L. Cao, Z.H. Jiang, Y.W. Dong, G.Q. Li, Z.W. Hou, Q. Wang: Ironmak. Steelmak., 2020, vol. 47, pp. 686-92.

    Article  CAS  Google Scholar 

  12. Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, G. Stovpchenko: ISIJ Int., 2018, vol. 58, pp. 1052-61.

    Article  CAS  Google Scholar 

  13. Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, G. Stovpchenko: metals, 2018, vol. 8, pp. 390-404.

    Article  Google Scholar 

  14. Y. Asai, M. Hori, and N. Tokumitsu: US 4373128 A, 1983.

  15. C.B. Shi: ISIJ Int., 2018, vol. 58, pp. 1052-60.

    Article  Google Scholar 

  16. R.S.E. Schneider, M. Molnar, G. Klösch, C. Schüller: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1904-11.

    Article  Google Scholar 

  17. D. Hou, D.Y. Wang, T.P. Qu, J. Tian, H.H. Wang: Metall. Mater. Trans. B, 2019, vol. 50, 3088-3102.

    Article  Google Scholar 

  18. Y. Lee, T. Lee, B.H. Kim, C.S. Lee: Met. Mater. Int., 2015, vol. 21, pp. 1054-60.

    Article  CAS  Google Scholar 

  19. F. Wang, Q. Wang, J. Baleta, B.K. Li: Metall. Mater. Trans. B, 2020, vol. 51, pp 2285-97.

    Article  Google Scholar 

  20. B.K. Li, F. Wang, F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1289-95.

    Article  CAS  Google Scholar 

  21. X.H. Wang, Y. Li: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1837-49.

    Article  Google Scholar 

  22. H. Song, N. Ida: IEEE Trans. Magn, 1991, vol. 27, pp. 4012-15.

    Article  Google Scholar 

  23. A. Jardy, D. Ablitzer, J.F. Wadier: Metall. Mater. Trans. B, 1991, vol. 22, pp. 111-20.

    Article  CAS  Google Scholar 

  24. J. Yanke, K. Fezi, R.W. Trice, M.J.M. Krane: Numer. Heat Transf. A, 2015, vol. 67, pp. 268-92.

    Article  Google Scholar 

  25. J. Yu, F.B. Liu, Z.H. Jiang, C.P. Kang, K. Chen, H.B. Li, X. Geng: Steel Res. Int., 2018, vol. 89, p. 1700481.

    Article  Google Scholar 

  26. M. Choudhary, J.Szekely: Metall. Mater. Trans. B, 1980, vol. 11, pp. 439-53.

    Article  Google Scholar 

  27. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V.Schmitt, S. Hans, H.Poisson: Metall. Mater. Trans. B, 2009, vol. 40, pp. 271-80.

    Article  CAS  Google Scholar 

  28. Y.W. Dong: Mathematical Modeling of Solidification during Electroslag Remelting Process and Development of New Slags, Northeastern University, Shenyang, 2008, pp. 36-48.

    Google Scholar 

  29. Y.W. Dong, Z.H. Jiang, J.X. Fan, Y.L. Cao, D. Hou, H.B. Cao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1475-88.

    Article  Google Scholar 

  30. Y.W. Dong, Z.H. Jiang, Y.L. Cao, D. Hou, L.K. Liang, J.C. Duan: ISIJ Int., 2015, vol. 55, pp. 904-6.

    Article  CAS  Google Scholar 

  31. L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, G. Ding: J. Iron Steel Res. Int, 2014, vol. 21, pp. 869-77.

    Article  CAS  Google Scholar 

  32. A. Cofiño-Villar, F, Alvarez-Antolin, J. Asensio-Lozano: materials, 2019, vol, 12, pp. 1304-15.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China

N. 51874084 and N. 51674140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Wu Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 3, 2020; accepted October 10, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, ZW., Dong, YW., Jiang, ZH. et al. Transient Simulations and Experiments on Compound Roll Produced by Electroslag Remelting Cladding. Metall Mater Trans B 52, 598–610 (2021). https://doi.org/10.1007/s11663-020-02019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02019-z

Navigation