Skip to main content
Log in

Long-Term Creep-Rupture Behavior of Alloy Inconel 740/740H

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2021

This article has been updated

Abstract

To explore potential application of Ni-based alloys for power generation at the higher temperatures and pressures needed to achieve high thermal to electrical-energy conversion efficiency, an extensive creep-rupture dataset covering up to 875 °C and almost 70,000 hours for Inconel 740/740H was analyzed using Larson–Miller parameter and Wilshire approaches. The results were used to assess the relative effectiveness of the two analytical methods, both in describing the experimental data and, because of the breadth of the dataset, using analyses of its shorter-time data to make creep lifetime predictions for much more extended times, which were then directly compared to the measured rupture times. The respective methods were also used to predict creep-limited lifetimes relevant to power production (that is, 100,000 hours or greater). Despite the complexity of the precipitation-strengthened Inconel 740/740H alloy and the generalized parametric approach of these methodologies, the predictions based on such were reasonably accurate when the entire dataset was analyzed. However, when the analysis was confined to only data for conditions yielding creep-rupture times < 5000 hours (about 65 pct of the entire dataset), the Wilshire correlation yielded better prediction for longer time lifetimes due to the inherent instability of the specific Larson–Miller formalism used in this analysis when extrapolated significantly outside its analysis range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. S. Zhao, X. Xie, G. D. Smith, and S. J. Patel: Mater. Sci. Eng. A, 2003, vol. 355(1-2), pp. 96-105.

    Article  Google Scholar 

  2. S. J. Patel: Acta Metall. Sinica Engl. Lett., 2005, vol. 18(4), pp. 479-488.

    CAS  Google Scholar 

  3. J. deBarbadillo and A. Di Gianfrancesco: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants: INCONEL alloy 740H, 1st ed., Woodhead Publishing, 2017, pp. 469–510.

  4. R. Viswanathan, J. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert: J. Mater. Eng. Perform., 2005, vol. 14(3), pp. 281-292.

    Article  CAS  Google Scholar 

  5. B. D. Iverson, T. M. Conboy, J. J. Pasch, and A. M. Kruizenga: Appl. Energy, 2013, vol. 111, pp. 957-970.

    Article  CAS  Google Scholar 

  6. R. Sun, Z. Cui, and Y. Tao: Advances in Materials Technology for Fossil Power Plants: Proc. Seventh International Conference, 2014, pp. 1–8.

  7. M. Fukuda, E. Saito, H. Semba, J. Iwasaki, S. Izumi, S. Takano, T. Takahashi, and Y. Sumiyoshi: Advances in Materials Technology for Fossil Power Plants: Proc. Seventh International Conference, 2014, pp. 24–40.

  8. M. Mecheri and Y. Le Moullec: Energy, 2016, vol. 103, pp. 758-771.

    Article  CAS  Google Scholar 

  9. R. Purgert, J. Shingledecker, J. Pschirer, R. Ganta, P. Weitzel, J. Sarver, B. Vitalis, M. Gagliano, G. Stanko, and P. Tortorelli: DOE-EIO-EPRI-01NT41175, United States (OSTI.gov), December 2015.

  10. B. Baker and R. Gollihue: Advances in Materials Technology for Fossil Power Plants: Proc. Sixth International Conference, 2011, pp. 96–109.

  11. C. J. Cowen, P. E. Danielson, and P. D. Jablonski: J. Mater. Eng. Perform., 2011, vol. 20(6), pp. 1078-1083.

    Article  CAS  Google Scholar 

  12. X. Xie, C. Chi, Q. Yu, Z. Yao, M. Zhang, Y. Hu, J. Dong, H. Yu, S. Zhao, F. Lin, X. Liu, L. Mei, H. Yang, and M. Li: Advances in Materials Technology for Fossil Power Plants: Proc. Seventh International Conference, 2014, pp. 98–119.

  13. S. Zhang and Y. Takahashi: Advances in Materials Technology for Fossil Power Plants: Proc. Seventh International Conference, 2014, pp. 242–253.

  14. F. Abe: Engineering, 2015, vol. 1(2), pp. 211-224.

    Article  CAS  Google Scholar 

  15. R. Viswanathan, J. Shingledecker, and R. Purgert: Power, 2010, vol. 154(8), pp. 41-45.

    Google Scholar 

  16. S. J. Patel, J. J. DeBarbadillo, B. A. Baker, and R. D. Gollihue: Procedia Eng., 2013, vol. 55, pp. 246-252.

    Article  CAS  Google Scholar 

  17. J. deBarbadillo, B. Baker, and X. Xie: Superalloys 2016: Proc. 13th Intenational Symposium on Superalloys, 2016, pp. 217–26.

  18. M. Hardy, M. Detrois, E. McDevitt, C. Argyrakis, V. Saraf, P. Jablonski, J. Hawk, R. Buckingham, H. Kitaguchi, and S. Tin: Metall. Mater. Trans. A, 2020, vol. 51(6), pp. 2626-2650.

    Article  Google Scholar 

  19. M. Evans: Metall. Mater. Trans. A, 2013, vol. 44(1), pp. 109-127.

    Article  Google Scholar 

  20. F. R. Larson and J. Miller: Trans. ASME, 1952, vol. 74, pp. 765-775.

    Google Scholar 

  21. B. Wilshire and A. Battenbough: Mater. Sci. Eng. A, 2007, vol. 443(1-2), pp. 156-166.

    Article  Google Scholar 

  22. J. P. Shingledecker and G. M. Pharr: Metall. Mater. Trans. A, 2012. vol. 43(6), pp. 1902-1910.

    Article  CAS  Google Scholar 

  23. J. Shingledecker, N. Evans, and G. Pharr: Mater. Sci. Eng. A, 2013, vol. 578, pp. 277-286.

    Article  CAS  Google Scholar 

  24. PF. Tortorelli, K.A. Unocic, H. Wang, M.L. Santella, and J. Shingledecker: Advances in Materials Technology for Fossil Power Plants: Proc. Seventh International Conference, 2014, pp. 131–42.

  25. P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, and V. Cedro III: ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, 2014, pp. 29–36.

  26. V. Cedro, C. Garcia, and M. Render: Materials, 2018, vol. 11(9), p. 1585.

    Article  Google Scholar 

  27. R. Swindeman, M. Swindeman, B. Roberts, B. Thurgood, and D. Marriott: DOE/ID14712-1, United States (OSTI.gov), November 2007.

  28. M. S. Haque and C. M. Stewart: J. Pressure Vessel Technol., 2020, vol. 142(3), p. 031504.

    Article  Google Scholar 

  29. F. C. Monkman and N. J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593-620.

    Google Scholar 

  30. J. Shingledecker and G. Pharr: J. Mater. Eng. Perform., 2013, vol. 22(2), pp. 454-462.

    Article  CAS  Google Scholar 

  31. American Society of Mechanical Engineers: Case 2702 Seamless Ni-25Cr-20Co Material, ASME Boiler and Pressure Vessel Code, 2011.

  32. F. Abe, M. Tabuchi, and M. Hayakawa: J. Pressure Vessel Technol., 2017, vol. 139(1), pp. 011403.

    Article  Google Scholar 

  33. S. Zhang and Y. Takahashi: ASME 2018 Pressure Vessels and Piping Conference, 2018, p. 85079.

  34. Special Metals, INCONEL® ALLOY 740H®. (PCC Energy Group. 2015) https://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-740-h.pdf. Accessed 1 September 2020.

  35. J. Li, R. Zhou, L. Tang, B. Wang, S. Hou, J. Li, W. Liu, H. Liu, and X. Li: Joint EPRI-123HiMAT International Conference on Advances in High-Temperature Materials: Proc. Ninth International Conference, 2019, pp. 448–59.

  36. X. W. Zhu, H. H. Cheng, M. H. Shen, and J. P. Pan: Adv. Mater. Res., 2013, vol. 791-793, pp. 374-377.

    Article  Google Scholar 

  37. B. Wilshire and P. Scharning: Mater. Sci. Technol., 2009, vol. 25(2), pp. 242-248.

    Article  CAS  Google Scholar 

  38. B. M. Adam, J. D. Tucker, and G. Tewksbury: J. Alloys Compd., 2020, vol. 818, pp. 152907.

    Article  CAS  Google Scholar 

  39. M. Wang, W. Wang, Z. Liu, C. Sun, and L. Qian: Mater. Today Commun., 2018, vol. 14, pp. 188-198.

    Article  CAS  Google Scholar 

  40. H. Monajati, A. Taheri, M. Jahazi, and S. Yue: Metall. Mater. Trans. A, 2005, vol. 36(4), pp. 895-905.

    Article  CAS  Google Scholar 

  41. H. J. McQueen and N. Ryan: Mater. Sci. Eng. A, 2002, vol. 322(1-2), pp. 43-63.

    Article  Google Scholar 

  42. M. Fährmann, E. Fährmann, T. Pollock, and W. Johnson: Metall. Mater. Trans. A, 1997, vol. 28(9), pp. 1943-1945.

    Article  Google Scholar 

  43. A. Baldan: J. Mater. Sci., 2002, vol. 37(12), pp. 2379-2405.

    Article  CAS  Google Scholar 

  44. M. Evans: Int. J. Press. Vessels Pip., 2011, vol. 88(11-12), pp. 449-451.

    Article  CAS  Google Scholar 

  45. K. A. Unocic, J. P. Shingledecker, and P. F. Tortorelli: JOM, 2014, vol. 66(12), pp. 2535-2542.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the U.S. DOE, Office of Fossil Energy, High Performance Materials, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL) managed by UT Battelle, LLC. Creep data were generated with funding from the DOE Office of Fossil Energy, Crosscutting Technologies program in collaboration with the DOE/Ohio Economic Development Corporation project on A-USC Materials. We are grateful to M. Fasouletos of the National Energy Technology Laboratory for the programmatic support. We acknowledge the technical initiative, support, and advice of J.P. Shingledecker, who designed the test matrix and procedures for the Inconel 740/740H creep studies, oversaw much of the experimental work while at ORNL and then, at the Electric Power Research Institute, served as technical manager of the A-USC materials program. The authors would like to express their appreciation for the technical assistance of Jeremy Moser and C. Shane Hawkins (ORNL) and the ORNL technical review from Yuki Yamamoto and Sebastien Dryepondt.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Render or P. F. Tortorelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. L. Santella and P. F. Tortorelli—Retired.

Manuscript submitted December 11, 2020; accepted March 18, 2021.

This manuscript has been authored by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

The original online version of this article has been revised: The reference citations in Table VII were corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Render, M., Santella, M.L., Chen, X. et al. Long-Term Creep-Rupture Behavior of Alloy Inconel 740/740H. Metall Mater Trans A 52, 2601–2612 (2021). https://doi.org/10.1007/s11661-021-06253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06253-1

Navigation