Skip to main content

Advertisement

Log in

Local Composition Migration Induced Microstructural Evolution and Mechanical Properties of Non-equiatomic Fe40Cr25Ni15 Al15Co5 Medium-Entropy Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A newly designed composition of non-equiatomic Fe40Cr25Ni15Al15Co5 medium-entropy alloy (MEA) was produced by induction melting (IM). The as-cast alloy was found to consist of a two-phase microstructure of BCC (2.87 ± 0.01 Å) and ordered B2 (2.88 ± 0.02 Å) type phases. The structures of these phases were confirmed through X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. It was observed that the Ni-Al-enriched ordered B2 phase of cuboidal shapes (~ 100 to 200 nm) is homogeneously distributed in Fe-Cr-rich BCC matrix with a cube-on-cube orientation relationship. The formation of the columnar dendrites (width 50 to 100 μm) was identified through optical microscopy (OM). The structural and microstructural stability of the alloy was investigated by heat-treating the alloy through different schedules. Heat-treated samples at different temperatures (< 1273 K) exhibit a similar type of two-phase microstructure with columnar dendrites. However, compositional rearrangement takes place during long time exposure to develop polymorphically related phases. The alloy was observed to possess a high compressive yield strength and hardness, i.e., ~ 1047 MPa and 391 ± 9 HV, respectively, at room temperature. Heat-treated samples at 600 °C and 900 °C (873 K and 1173 K) showed an increase in yield strength and ultimate strength with a significant increase in plasticity due to the increase in volume fraction of B2 phase and softening of the BCC matrix phase. The thermal stability and high strength of this alloy may open new avenues for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–8.

    Article  Google Scholar 

  3. E.J. Pickering and N.G. Jones: Int. Mater. Rev., 2016, vol. 61, pp. 183–202.

    Article  CAS  Google Scholar 

  4. Y. Zhang, T. Ting, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z. Ping: Prog. Mater. Sci., 2014, vol. 61, pp. 1–93.

    Article  Google Scholar 

  5. N.K. Mukhopadhyay: Curr. Sci., 2015, vol. 109, pp. 665–67.

    Article  Google Scholar 

  6. J.W. Yeh: JOM, 2013, vol. 65, pp. 1759–71.

    Article  CAS  Google Scholar 

  7. V. Shivam, Y. Shadangi, J. Basu, and N.K. Mukhopadhyay: J. Mater. Res., 2019, vol. 35, pp. 787–95.

    Article  Google Scholar 

  8. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh: Intermetallics, 2012, vol. 26, pp. 44–51.

    Article  Google Scholar 

  9. M. Vaidya, G.M. Muralikrishna, and B.S. Murty: J. Mater. Res., 2019, vol. 34, pp. 664–86.

    Article  CAS  Google Scholar 

  10. T. Borkar, B. Gwalani, D. Choudhuri, C. V Mikler, C.J. Yannetta, X. Chen, R. V Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee: Acta Mater., 2016, vol. 116, pp. 63–76.

    Article  CAS  Google Scholar 

  11. F. Otto, Y. Yang, H. Bei, and E.P. George: Acta Mater., 2013, vol. 61, pp. 2628–38.

    Article  CAS  Google Scholar 

  12. A.S. Sharma, S. Yadav, K. Biswas, and B. Basu: Mater. Sci. Eng. R, 2018, vol. 131, pp. 1–42.

    Article  Google Scholar 

  13. M.H. Tsai and J.W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107–23.

    Article  Google Scholar 

  14. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  15. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen: Wear, 2010, vol. 268, pp. 653–9.

    Article  CAS  Google Scholar 

  16. S. Yadav, A. Kumar, and K. Biswas: Mater. Chem. Phys., 2018, vol. 210, pp. 222–32.

    Article  CAS  Google Scholar 

  17. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada: J. Alloys Compd., 2016, vol. 662, pp. 361–7.

    Article  CAS  Google Scholar 

  18. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu: J. Alloys Compd., 2018, vol. 760, pp. 15–30.

    Article  CAS  Google Scholar 

  19. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nano Lett., 2017, vol. 17, pp. 1569–74.

    Article  CAS  Google Scholar 

  20. Y. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, and H. Cai: Nat. Commun. 2018, 9, pp. 1–8.

    Article  Google Scholar 

  21. D.G. Shaysultanov, G.A. Salishchev, Y. V Ivanisenko, S. V Zherebtsov, M.A. Tikhonovsky, and N.D. Stepanov: J. Alloys Compd., 2017, vol. 705, pp. 756–63.

    Article  CAS  Google Scholar 

  22. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh: Acta Mater., 2018, vol. 147, pp. 213–25.

    Article  CAS  Google Scholar 

  23. A. Munitz, S. Salhov, S. Hayun, and N. Frage: J. Alloys Compd., 2016, 683, pp. 221–30.

    Article  CAS  Google Scholar 

  24. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay: Adv. Powder Technol., 29(9), 2221-2230, 2018. doi:10.1016/j.apt.2018.06.006.

    Article  CAS  Google Scholar 

  25. C.M. Lin and H.L. Tsai: Intermetallics, 2011, vol. 19, pp. 288–94.

    Article  CAS  Google Scholar 

  26. J. Hao, Y. Ma, Q. Wang, C. Zhang, C. Li, C. Dong, Q. Song, and P.K. Liaw: Jounal Alloy. Compd., 2019, vol. 780, pp. 408–21.

    Article  CAS  Google Scholar 

  27. F. Meng, J. Qiu, and I. Baker: Mater. Sci. Eng. A, 2013, vol. 586, pp. 45–52.

    Article  CAS  Google Scholar 

  28. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: Acta Mater., 2016, vol. 102, pp. 187–96.

    Article  CAS  Google Scholar 

  29. H. Jain, Y. Shadangi, V. Shivam, and D. Chakravarty, D Mukhopadhya, N.K Kumar: J. Alloys Compd. 2020, vol. 834, p. 155013.

    Article  CAS  Google Scholar 

  30. A.R. Miedema, P.F. de Châtel, and F.R. de Boer: Phys. B, 1980, vol. 100, pp. 1–28.

    Article  CAS  Google Scholar 

  31. S. Guo and C.T. Liu: Prog. Nat. Sci. Mater. Int., 2011, vol. 21, pp. 433–46.

    Article  Google Scholar 

  32. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe: Scr. Mater., 2014, vol. 72–73, pp. 5–8.

    Article  Google Scholar 

  33. S. Ghosh, J. Basu, D. Ramachandran, E. Mohandas, and M. Vijayalakshmi: Intermetallics, 2012, vol. 23, pp. 148–57.

    Article  CAS  Google Scholar 

  34. E.A. Marquis and D.N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909–19.

    Article  CAS  Google Scholar 

  35. M.E. Thompson, C.S. Su, and P.W. Voorhees: Acta Metall., 1994, vol. 42, pp. 2107–22.

    Article  CAS  Google Scholar 

  36. B.. Murty: High Entropy Alloy, 2014.

  37. J. Basu and S. Ranganathan: Sadhana, 2003, vol. 28, pp. 783–98.

    Article  CAS  Google Scholar 

  38. J. Basu and S. Ranganathan: Acta Mater., 2008, vol. 56, pp. 1899–907.

    Article  CAS  Google Scholar 

  39. J. Basu and S. Ranganathan: Intermetallics, 2009, vol. 17, pp. 128–35.

    Article  CAS  Google Scholar 

  40. J. Basu and S. Ranganathan: Intermetallics, 2004, vol. 12, pp. 1045–50.

    Article  CAS  Google Scholar 

  41. Y. Zhou, X. Jin, L. Zhang, X. Du, and B. Li: Mater. Sci. Eng. A, 2018, vol. 716, pp. 235–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. R.K Mandal, Dr. Manish Kumar Singh, Yagnesh Shadangi and Priyatosh Pradhan for their help and stimulating discussion during the course of this work. The authors are also grateful to the Advanced Research Centre for Iron and Steel (ARCIS) of the Institute funded by the Steel Development Fund, Ministry of Steel, India, for providing melting and XRD facilities. The authors would also like to acknowledge the DST-FIST funding for providing the electron microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Shivam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 29, 2020; accepted February 7, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivam, V., Basu, J., Manna, R. et al. Local Composition Migration Induced Microstructural Evolution and Mechanical Properties of Non-equiatomic Fe40Cr25Ni15 Al15Co5 Medium-Entropy Alloy. Metall Mater Trans A 52, 1777–1789 (2021). https://doi.org/10.1007/s11661-021-06188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06188-7

Navigation