Skip to main content
Log in

Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Age-related deterioration of limb bone diaphyseal structure is documented among precontact Inuit foragers from northern Alaska. These findings challenge the concept that bone loss and fracture susceptibility among modern Inuit stem from their transition away from a physically demanding traditional lifestyle toward a more sedentary Western lifestyle.

Introduction

Skeletal fragility is rare among foragers and other traditional-living societies, likely due to their high physical activity levels. Among modern Inuit, however, severe bone loss and fractures are apparently common. This is possibly because of recent Western influences and increasing sedentism. To determine whether compromised bone structure and strength among the Inuit are indeed aberrant for a traditional-living group, data were collected on age-related variation in limb bone diaphyseal structure from a group predating Western influences.

Methods

Skeletons of 184 adults were analyzed from the Point Hope archaeological site. Mid-diaphyseal structure was measured in the humerus, radius, ulna, femur, and tibia using CT. Structural differences were assessed between young, middle-aged, and old individuals.

Results

In all bones examined, both females and males exhibited significant age-related reductions in bone quantity. With few exceptions, total bone (periosteal) area did not significantly increase between young and old age in either sex, nor did geometric components of bending rigidity (second moments of area).

Conclusions

While the physically demanding lifestyles of certain traditional-living groups may protect against bone loss and fracture susceptibility, this is not the case among the Inuit. It remains possible, however, that Western characteristics of the modern Inuit lifestyle exacerbate age-related skeletal deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nesse RM, Williams GC (1994) Why we get sick: the new science of Darwinian medicine. Times Books, New York

    Google Scholar 

  2. Lieberman DE (2013) The story of the human body: evolution, health, and disease. Pantheon, New York

    Google Scholar 

  3. Tan VP, Macdonald HM, Kim S et al (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 29:2161–2181

    Article  PubMed  Google Scholar 

  4. Warden SJ, Mantila Roosa SM, Kersh ME et al (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111:5337–5342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ruff CB (2006) Gracilization of the modern human skeleton. Am Sci 94:508–514

    Article  Google Scholar 

  6. Karasik D (2008) Osteoporosis: an evolutionary perspective. Hum Genet 124:349–356

    Article  PubMed  Google Scholar 

  7. Nowlan NC, Jepsen KJ, Morgan EF (2011) Smaller, weaker, and less stiff bones evolve from changes in subsistence strategy. Osteoporos Int 22:1967–1980

    Article  CAS  PubMed  Google Scholar 

  8. Aspray TJ, Prentice A, Cole TJ et al (1996) Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. J Bone Miner Res 11:1019–1025

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal SC (2008) Light and broken bones: examining and interpreting bone loss and osteoporosis in past populations. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton, 2nd edn. Wiley, Hoboken, pp 387–410

    Chapter  Google Scholar 

  10. Perzigian AJ (1973) Osteoporotic bone loss in two prehistoric Indian populations. Am J Phys Anthropol 39:87–95

    Article  CAS  PubMed  Google Scholar 

  11. Madimenos FC, Snodgrass JJ, Blackwell AD et al (2011) Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. Arch Osteoporos 6:39–49

    Article  PubMed  Google Scholar 

  12. Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948

    Article  CAS  PubMed  Google Scholar 

  13. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  CAS  PubMed  Google Scholar 

  14. Pratt WB, Holloway JM (2001) Incidence of hip fracture in Alaska Inuit people: 1979–89 and 1996–99. Alaska Med 43:2–5

    CAS  PubMed  Google Scholar 

  15. El Hayek J, Pronovost A, Morin S et al (2012) Forearm bone mineral density varies as a function of adiposity in Inuit women 40–90 years of age during the vitamin D-synthesizing period. Calcif Tissue Int 90:384–395

    Article  PubMed  Google Scholar 

  16. Jakobsen A, Laurberg P, Vestergaard P et al (2013) Clinical risk factors for osteoporosis are common among elderly people in Nuuk, Greenland. Int J Circumpolar Health 72:19596

    Article  PubMed  Google Scholar 

  17. Mazess RB, Mather W (1974) Bone mineral content of North Alaskan Eskimos. Am J Clin Nutr 27:916–925

    CAS  PubMed  Google Scholar 

  18. Mazess RB, Mather W (1975) Bone mineral content in Canadian Eskimos. Hum Biol 47:45–63

    Google Scholar 

  19. Sharma S (2010) Assessing diet and lifestyle in the Canadian Arctic Inuit and Inuvialuit to inform a nutrition and physical activity intervention programme. J Hum Nutr Diet 23:5–17

    Article  PubMed  Google Scholar 

  20. Kolahdooz F, Barr A, Roache C et al (2013) Dietary adequacy of vitamin D and calcium among Inuit and Inuvialuit women of child-bearing age in Arctic Canada: a growing concern. PLoS ONE 8:e78987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Larsen H, Rainey FG (1948) Ipiutak and the Arctic whale hunting culture. Anthropol Pap Am Mus 42:1–276

    Google Scholar 

  22. Rainey FG (1947) The whale hunters of Tigara. Anthropol Pap Am Mus 41:230–283

    Google Scholar 

  23. Burch ES (1981) The traditional Eskimo hunters of Point Hope, Alaska: 1800–1875. North Slope Borough, Point Hope, AK

  24. Lammert O (1972) Maximal aerobic power and energy expenditure of Eskimo hunters in Greenland. J Appl Physiol 33:184–188

    CAS  PubMed  Google Scholar 

  25. Godin G, Shephard RJ (1973) Activity patterns of the Canadian Eskimo. In: Edholm OG, Gunderson EKE (eds) Human polar biology. Butterworth-Heinemann, Oxford, pp 193–215

    Chapter  Google Scholar 

  26. White TD, Black MT, Folkens PA (2011) Human osteology, 3rd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  27. Auerbach BM, Ruff CB (2010) Stature estimation formulae for indigenous North American populations. Am J Phys Anthropol 141:190–207

    PubMed  Google Scholar 

  28. Ruff CB, Holt BM, Niskanen M et al (2012) Stature and body mass estimation from skeletal remains in the European Holocene. Am J Phys Anthropol 148:601–617

    Article  PubMed  Google Scholar 

  29. Ruff C, Niskanen M, Junno J-A et al (2005) Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. J Hum Evol 48:381–392

    Article  PubMed  Google Scholar 

  30. Doube M, Kłosowski MM, Arganda-Carreras I et al (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ruff CB, Trinkaus E, Walker A et al (1993) Postcranial robusticity in Homo. I: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  CAS  PubMed  Google Scholar 

  32. Laughlin SB (1985) Skeletal aging patterns of Tigara and Ipiutak Eskimo of Point Hope, Alaska. (Unpublished master’s thesis). University of Connecticut, Storrs

  33. Burr D, Martin R (1983) The effects of composition, structure and age on torsional properties of the human radius. J Biomech 16:603–608

    Article  CAS  PubMed  Google Scholar 

  34. Riggs BL, Melton LJ, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  35. Russo CR, Lauretani F, Seeman E et al (2006) Structural adaptations in aging men and women. Bone 38:112–118

    Article  PubMed  Google Scholar 

  36. Yuen KW, Kwok TC, Qin L et al (2010) Characteristics of age-related changes in bone compared between male and female reference Chinese populations in Hong Kong: a pQCT study. J Bone Miner Metab 28:672–681

    Article  PubMed  Google Scholar 

  37. Allen MD, McMillan SJ, Klein C et al (2012) Differential age-related changes in bone geometry between the humerus and the femur in healthy men. Aging Dis 3:156–163

    PubMed Central  PubMed  Google Scholar 

  38. Webb AR (2006) Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92:17–25

    Article  CAS  PubMed  Google Scholar 

  39. Odén A, Kanis JA, McCloskey EV, Johansson H (2014) The effect of latitude on the risk of seasonal variation in hip fracture in Sweden. J Bone Miner Res 29:2217–2223

    Article  PubMed  Google Scholar 

  40. Kuhnlein HV, Soueida R, Receveur O (1996) Dietary nutrient profiles of Canadian Baffin Island Inuit differ by food source, season, and age. J Am Diet Assoc 96:155–162

    Article  CAS  PubMed  Google Scholar 

  41. Specker B, Binkley T, Fahrenwald N (2004) Rural versus nonrural differences in BMC, volumetric BMD, and bone size: a population-based cross-sectional study. Bone 35:1389–1398

    Article  PubMed  Google Scholar 

  42. Pongchaiyakul C, Nguyen TV, Kosulwat V et al (2005) Effect of urbanization on bone mineral density: a Thai epidemiological study. BMC Musculoskelet Disord 6:5

    Article  PubMed Central  PubMed  Google Scholar 

  43. Søgaard AJ, Gustad TK, Bjertness E et al (2007) Urban–rural differences in distal forearm fractures: Cohort Norway. Osteoporos Int 18:1063–1072

    Article  PubMed  Google Scholar 

  44. Kruger MC, Kruger IM, Wentzel-Viljoen E et al (2011) Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. Nutr Res 31:748–758

    Article  CAS  PubMed  Google Scholar 

  45. Martrille L, Ubelaker DH, Cattaneo C et al (2007) Comparison of four skeletal methods for the estimation of age at death on white and black adults. J Forensic Sci 52:302–307

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D.H. Thomas, I. Tattersall, and G. Garcia at the American Museum of Natural History for facilitating analysis of the Point Hope skeletons; M. Tweedie for assistance with transporting skeletons for analysis; undergraduate anthropology students for help with data collection; B. Maley for providing morphological data from the skulls for sex assignment; and N. Blegen, L. Cowgill, O. Pearson, and M. Gomberg for critical references. We are grateful to B. Schipf, M. Axoso, and C. Mazzerese for unstinting assistance with CT scanning. Funding was provided by Stony Brook University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Wallace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, I.J., Nesbitt, A., Mongle, C. et al. Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska. Arch Osteoporos 9, 202 (2014). https://doi.org/10.1007/s11657-014-0202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-014-0202-3

Keywords

Navigation