Skip to main content
Log in

Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himalaya

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

First comprehensive investigations of the Cuonadong leucogranite exposed in North Himalayan gneiss dome of southern Tibet are presented in this study. The SIMS U–Pb ages of oscillatory zircon rims scatter in a wide range from 34.1 to 16.0 Ma, and the Cuonadong leucogranite probably emplaced at 16.0 Ma. High-precision 40Ar/39Ar dating on a muscovite sample yields an essentially flat age spectrum with consistent plateau and isochron ages, indicating that the Cuonadong leucogranite cooled below 450 °C at 14 Ma. Based on the youngest zircon U–Pb age and muscovite 40Ar/39Ar age, the Cuonadong leucogranite experienced rapid cooling with a rate of 119 °C/Myr from 16 to 14 Ma. The geochronological data of this undeformed leucogranite also suggest that the ductile extension of the South Tibetan Detachment System in the eastern Himalaya ceased by ca. 14 Ma. Furthermore, the initial Sr–Nd isotopic compositions and Nd model ages demonstrate that the leucogranite was derived from metapelitic source within the Greater Himalayan Crystalline Complex. The distinct Ba depletion with high Rb/Sr ratios and negative Eu anomalies make it clear that the leucogranite melts were generated by breakdown of muscovite under fluid-absent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geol Soc Am Bull 112:467–477

    Article  Google Scholar 

  • Aikman AB, Harrison TM, Lin D (2008) Evidence for early (> 44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett 274:14–23

    Article  Google Scholar 

  • Aikman AB, Harrison TM, Hermann J (2012) Age and thermal history of Eo- and Neohimalayan granitoids, eastern Himalaya. J Asian Earth Sci 51:85–97

    Article  Google Scholar 

  • Annen C, Scaillet B, Sparks RSJ (2006) Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya. J Petrol 47:71–95

    Article  Google Scholar 

  • Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y, Heizler M (2005) North-south extension in the Tibetan crust triggered by granite emplacement. Geology 33:853

    Article  Google Scholar 

  • Bai XJ, Qiu HN, Liu WG, Mei LF (2018) Automatic 40Ar/39Ar dating techniques using multicollector ARGUS VI noble gas mass spectrometer with self-made peripheral apparatus. J Earth Sci 29:408–415

    Article  Google Scholar 

  • Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24:295–298

    Article  Google Scholar 

  • Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK (2009) Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol Soc Am Bull 121:385–407

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Copeland P, Harrison TM, Lefort P (1990) Age and cooling history of the Manaslu granite: implications for Himalayan tectonics. J Volcanol Geotherm Res 44:33–50

    Article  Google Scholar 

  • Deniel C, Vidal P, Fernandez A, Lefort P, Peucat JJ (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal)—inferences on the age and source of Himalayan leukogranites. Contrib Mineral Petrol 96:78–92

    Article  Google Scholar 

  • Fournier HW, Lee JKW, Urbani F, Grande S (2017) The tectonothermal evolution of the Venezuelan Caribbean Mountain System: 40Ar/39Ar age insights from a Rodinian-related rock, the Cordillera de la Costa and Margarita Island. J S Am Earth Sci 80:149–173

    Article  Google Scholar 

  • Fu J, Li G, Wang G, Huang Y, Zhang L, Dong S, Liang W (2017) First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome. Int J Earth Sci 106:1581–1596

    Article  Google Scholar 

  • Gao LE, Zeng LS (2014) Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochim Cosmochim Acta 130:136–155

    Article  Google Scholar 

  • Gao LE, Gao JH, Zhao LH, Hou KJ, Tang SH (2017) The Miocene leucogranite in the Nariyongcuo Gneiss Dome, southern Tibet: Products from melting metapelite and fractional crystallization. Acta Petrol Sin 33:2395–2411

    Google Scholar 

  • Guo ZF, Wilson M (2012) The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res 22:360–376

    Article  Google Scholar 

  • Harris NBW, Inger S (1992) Trace-element modeling of pelite-derived granites. Contrib Mineral Petrol 110:46–56

    Article  Google Scholar 

  • Harris N, Vance D, Ayres M (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem Geol 162:155–167

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res [Solid Earth] 103:27017–27032

    Article  Google Scholar 

  • Harrison TM, Grove M, McKeegan KD, Coath CD, Lovera OM, Le fort P (1999) Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. J Petrol 40:3–19

    Article  Google Scholar 

  • Harrison TM, Celerier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Hopkinson TN, Harris NBW, Warren CJ, Spencer CJ, Roberts NMW, Horstwood MSA, Parrish RR, EIMF (2017) The identification and significance of pure sediment-derived granites. Earth Planet Sci Lett 467:57–63

    Article  Google Scholar 

  • Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W, Sun QZ (2012) Eocene-Oligocene granitoids in southern Tibet: constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett 349–350:38–52

    Article  Google Scholar 

  • Inger S, Harris N (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34:345–368

    Article  Google Scholar 

  • Kawakami T, Aoya M, Wallis SR, Lee J, Terada K, Wang Y, Heizler M (2007) Contact metamorphism in the Malashan dome, North Himalayan gneiss domes, southern Tibet: an example of shallow extensional tectonics in the Tethys Himalaya. J Metamorph Geol 25:831–853

    Article  Google Scholar 

  • Kellett DA, Grujic D, Erdmann S (2009) Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: Implications for continental collision. Lithosphere 1:259–281

    Article  Google Scholar 

  • King J, Harris N, Argles T, Parrish R, Zhang H (2011) Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Am Bull 123:218–239

    Article  Google Scholar 

  • Knesel KM, Davidson JP (2002) Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science 296:2206–2208

    Article  Google Scholar 

  • Koppers AAP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Article  Google Scholar 

  • Gao LE, Zeng LS (2009) Early Oligocene Na-rich peraluminous leucogranites in the Yardoi gneiss dome, southern Tibet: formation mechanism and tectonic implications. Acta Petrol Sin 25:2289–2302

    Google Scholar 

  • Lederer GW, Cottle JM, Jessup MJ, Langille JM, Ahmad T (2013) Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India. Contrib Mineral Petrol 166:1415–1441

    Article  Google Scholar 

  • Lee J, Whitehouse MJ (2007) Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages. Geology 35:45

    Article  Google Scholar 

  • Lefort P (1981) Manaslu leucogranite—a collision signature of the Himalaya a model for its genesis and emplacement. J Geophys Res [Solid Earth] 86:545–568

    Google Scholar 

  • Lefort P, Cuney M, Deniel C, Francelanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57

    Article  Google Scholar 

  • Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst 10:Q04010

    Google Scholar 

  • Lin B, Tang J, Zheng W, Leng Q, Lin X, Wang Y, Meng Z, Tang P, Ding S, Xu Y, Yuan M (2016) Geochemical characteristics, age and genesis of Cuonadong leucogranite, Tibet. Acta Petrol Mineral 35:391–406 (in Chinese with English abstract)

    Google Scholar 

  • Liu ZC, Wu FY, Ji WQ, Wang JG, Liu CZ (2014) Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 208:118–136

    Article  Google Scholar 

  • Liu ZC, Wu FY, Ding L, Liu XC, Wang JG, Ji WQ (2016) Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 240:337–354

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, Oxford

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Murphy MA (2007) Isotopic characteristics of the Gurla Mandhata metamorphic core complex: Implications for the architecture of the Himalayan orogen. Geology 35:983

    Article  Google Scholar 

  • Nelson KD, Zhao WJ, Brown LD, Kuo J, Che JK, Liu XW, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen LS, Tan HD, Wei WB, Jones AG, Booker J, Unsworth M, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu CD, Sandvol E, Edwards M (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Article  Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Prince C, Harris N, Vance D (2001) Fluid-enhanced melting during prograde metamorphism. J Geol Soc 158:233–241

    Article  Google Scholar 

  • Pullen A, Kapp P, DeCelles PG, Gehrels GE, Ding L (2011) Cenozoic anatexis and exhumation of Tethyan sequence rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics 501:28–40

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796

    Article  Google Scholar 

  • Richards A, Parrish R, Harris N, Argles T, Zhang L (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341–344

    Article  Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petrol 165:349–372

    Article  Google Scholar 

  • Scaillet B, Francelanord C, Lefort P (1990) Badrinath-Gangotri plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. J Volcanol Geotherm Res 44:163–188

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M, Schmidt M (1996) Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. J Geophys Res [Solid Earth] 101:27691–27699

    Article  Google Scholar 

  • Scharer U, Xu RH, Allegre CJ (1986) U–(Th)–Pb systematics and ages of Himalayan Leucogranites, South Tibet. Earth Planet Sci Lett 77:35–48

    Article  Google Scholar 

  • Schultz MH, Hodges KV, Ehlers TA, van Soest M, Wartho J-A (2017) Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth Planet Sci Lett 459:105–117

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • van Rooyen D, Carr SD, Gibson D (2016) 40Ar/39Ar thermochronology of the Thor-Odin—Pinnacles area, southeastern British Columbia: tectonic implications of cooling and exhumation patterns. Can J Earth Sci 53:993–1009

    Article  Google Scholar 

  • Wang XX, Zhang JJ, Yan SY, Liu J (2016) Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications. Geol Bull China 35:91–103 (in Chinese with English abstract)

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • White LT, Ireland TR (2012) High-uranium matrix effect in zircon and its implications for SHRIMP U–Pb age determinations. Chem Geol 306:78–91

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wu FY, Liu ZC, Liu XC, Ji WQ (2015) Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol Sin 31:1–36 (in Chinese with English abstract)

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zeng LS, Gao LE (2017) Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrol Sin 33:1420–1444

    Google Scholar 

  • Zeng LS, Gao LE, Xie KJ, Liu ZJ (2011) Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: melting thickened lower continental crust. Earth Planet Sci Lett 303:251–266

    Article  Google Scholar 

  • Zeng LS, Gao LE, Tang SH, Hou KJ, Guo CL, Hu GY (2015) Eocene magmatism in the Tethyan Himalaya, southern Tibet. Geol Soc Lond Spec Publ 412:287–316

    Article  Google Scholar 

  • Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212

    Article  Google Scholar 

  • Zhang Z, Zhang LK, Li GM, Liang W, Xia XB, Fu JG, Dong SL, Ma GT (2017) The cuonadong gneiss dome of North Himalaya: a new member of gneiss dome and a new proposition for the ore-controlling role of north Himalaya gneiss domes. Acta Geosci Sin 38:754–766 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Yuanbao Wu and Defeng He for their constructive suggestions. We appreciate the assistance of Lin Ma for field sampling, and Xianglin Tu for trace element analyses. We also thank Yingde Jiang and Ming Xiao for their helpful discussion. This study was supported by the National Natural Science Foundation of China (Nos. 41630315, 41503053 and 41688103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaning Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Qiu, H., Bai, X. et al. Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himalaya. Acta Geochim 37, 347–359 (2018). https://doi.org/10.1007/s11631-018-0273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0273-8

Keywords

Navigation