Skip to main content

Advertisement

Log in

Modeling of Packed Bed Methanol Steam Reformer Integrated with Tubular High Temperature Proton Exchange Membrane Fuel Cell

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell (PEMFC) integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output. A two-dimensional axisymmetric non-isothermal model was developed in COMSOL Multiphysics 5.4 to simulate the performance of a tubular high temperature proton membrane fuel cell and a packed bed methanol reformer. The model considers the coupling multi-physical processes, including methanol reforming reaction, water gas shift reaction, methanol cracking reaction as well as the heat, mass and momentum transport processes. The sub-model of the tubular packed-bed methanol reformer is validated between 433 K and 493 K with the experimental data reported in the literature. The sub-model of the high temperature proton exchange fuel cell is validated between 393 K and 433 K with the published literature. Our results show that power output and temperature distribution of the integrated unit depend on methanol flow rates and working voltages. It was suggested that stable power generation performance of 0.14 W/cm2 and temperature drop in methanol steam reformer of ≤10 K could be achieved by controlling the methanol space-time ratio of ≥250 kg·s/mol with working voltage at 0.6 V, even in the absence of an external heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Molar concentration/mol·m−3

\(C_{\rm{S}}^{\rm{T}}\) :

Total surface concentrations of catalyst sites

C p :

Specific heat capacity/J·kg−1·K−1

CL:

Catalyst layer

D :

Diffusion coefficient/m2·s−1

d :

Diameter/m

E a :

Activation energy/kJ

F :

Faraday’s constant, 96 485 C·mol−1

FC:

Fuel cell

GDL:

Gas diffusion layer

H :

Enthalpy/J·mol−1

i :

Exchange current density/A·m−2

j :

Transfer current density/A·m−3

k :

Reaction kinetic constant/m2·s−1·mol−1

k 0 :

Arrhenius pre-reaction factor/m2·s−1·mol−1

lm:

Electrolyte volume fraction

M :

Molecular weight/kg·mol−1

Q :

Heat/J

Q m :

Source term/kg·m−3·s−1

R :

Universal gas constant, 8.314 J·mol−1·K−1

r :

Reaction rate/mol·m−3·s−1

S :

Source term, entropy/J·mol−1·K−1

T :

Temperature/K

U :

Electric potential/V

u :

Superficial velocity/m·s−1

V :

Voltage/V

x :

Mole fraction

α :

Transfer coefficient

ε :

Porosity

η :

Overpotential/V

η conv :

Methanol conversion rate

κ :

Permeability/m2

λ :

Thermal conductivity/W·m−1·K−1

µ :

Dynamic viscosity/kg·m−1·s−1

ρ :

Density/kg·m−3

σ :

Electrical conductivity/S·m−1

φ :

Electric and ionic potential/V

ω :

Mass fraction

a:

Anode

c:

Cathode

cat:

Catalyst layer

ele:

Electronic

i,j :

Different species

irr:

Irreversible

m:

Membrane

ohm:

Ohmic resistance

ope:

Operational

pro:

Protonic

rev:

Reversible

eff:

Effective value

ref:

Reference state

References

  1. Shen Y.T., Kwan T.H., Yao Q.H., et al., Performance numerical analysis of thermoelectric generator sizing for integration into a high temperature proton exchange membrane fuel cell. Applied Thermal Engineering, 2020, 178: 115486.

    Article  Google Scholar 

  2. Herdem M.S., Sinaki M.Y., Farhad S., Hamdullahpur F., et al., An overview of the methanol reforming process: Comparison of fuels, catalysts, reformers, and systems. International Journal of Energy Research, 2019, 43(10): 5076–5105.

    Article  Google Scholar 

  3. Chen C.Y., Lai W.H., Chen Y.K., et al., Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. International Journal of Hydrogen Energy, 2014, 39(25): 13757–13762.

    Article  Google Scholar 

  4. Kim J., Kim M., Lee B.G., et al., Durability of high temperature polymer electrolyte membrane fuel cells in daily based start/stop operation mode using reformed gas. International Journal of Hydrogen Energy, 2015, 40(24): 7769–7776.

    Article  Google Scholar 

  5. Authayanun S., Saebea D., Patcharavorachot Y., et al., Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems. Energy, 2014, 68: 989–997.

    Article  Google Scholar 

  6. Thomas S., Vang J.R., Araya S.S., et al., Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions. Applied Energy, 2017, 192: 422–436.

    Article  Google Scholar 

  7. Schuller G., Vázquez F. V., Waiblinger W., et al., Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer. Journal of Power Sources, 2017, 347: 47–56.

    Article  ADS  Google Scholar 

  8. Huang K.P., Lai W.H., Effects of anodic gas conditions on performance and resistance of a PBI/H3PO4 proton exchange membrane fuel cell with metallic bipolar plates. International Journal of Hydrogen Energy, 2017, 42(39): 24960–24967.

    Article  Google Scholar 

  9. [9] Zhang C.Z., Zhou W.J., Ehteshami M.M., et al., Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Conversion and Management, 2015, 105: 433–441.

    Article  Google Scholar 

  10. Pan C., He R.H., Li Q.F., et al., Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 2005, 145(2): 392–398.

    Article  ADS  Google Scholar 

  11. Boaventura M., Alves I., Ribeirinha P., et al., The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance. International Journal of Hydrogen Energy, 2016, 41(43): 19771–19780.

    Article  Google Scholar 

  12. Ribeirinha P., Abdollahzadeh M., Sousa M.J., et al., Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Applied Energy, 2017, 202: 6–19.

    Article  Google Scholar 

  13. Ribeirinha P., Abdollahzadeh M., Pereira A., et al., High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling. Applied Energy, 2018, 215: 659–669.

    Article  Google Scholar 

  14. Israni S.H., Harold M.P., Methanol steam reforming in single-fiber packed bed Pd-Ag membrane reactor: Experiments and modeling. Journal of Membrane Science, 2011, 369(1): 375–387.

    Article  Google Scholar 

  15. Sanz R., Calles J.A., Alique D., et al., Hydrogen production in a pore-plated Pd-membrane reactor: Experimental analysis and model validation for the water gas shift reaction. International Journal of Hydrogen Energy, 2015, 40(8): 3472–3484.

    Article  Google Scholar 

  16. Hwang K., Oh D.K., Lee S.W., et al., Porous stainless steel support for hydrogen separation Pd membrane; fabrication by metal injection molding and simple surface modification. International Journal of Hydrogen Energy, 2017, 42(21): 14583–14592.

    Article  Google Scholar 

  17. Pourmahmoud N., Sadeghifar H., Torkavannejad A., A novel, state-of-the-art tubular architecture for polymer electrolyte membrane fuel cells: Performance enhancement, size and cost reduction. International Journal of Heat and Mass Transfer, 2017, 108: 577–584.

    Article  Google Scholar 

  18. Saghali Z., Mahmoudimehr J., Superiority of a novel conic tubular PEM fuel cell over the conventional cylindrical one. International Journal of Hydrogen Energy, 2017, 42(48): 28865–28882.

    Article  Google Scholar 

  19. Sadiq Al-Baghdadi M.A.R., Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell. Renewable Energy, 2008, 33(6): 1334–1345.

    Article  Google Scholar 

  20. Bullecks B., Rengaswamy R., Bhattacharyya D., et al., Development of a cylindrical PEM fuel cell. International Journal of Hydrogen Energy, 2011, 36(1): 713–719.

    Article  Google Scholar 

  21. Sierra J.M., Figueroa-Ramírez S.J., Díaz S.E., et al., Numerical evaluation of a PEM fuel cell with conventional flow fields adapted to tubular plates. International Journal of Hydrogen Energy, 2014, 39(29): 16694–16705.

    Article  Google Scholar 

  22. Pourmahmoud N., Sadeghifar H., Torkavannejad A., A novel, state-of-the-art tubular architecture for polymer electrolyte membrane fuel cells: Performance enhancement, size and cost reduction. International Journal of Heat and Mass Transfer, 2017, 108: 577–584.

    Article  Google Scholar 

  23. Saghali Z., Mahmoudimehr J., Superiority of a novel conic tubular PEM fuel cell over the conventional cylindrical one. International Journal of Hydrogen Energy, 2017, 42(48): 28865–28882.

    Article  Google Scholar 

  24. Wang L., Tao Y.K., Zhang Z., et al., Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2019, 44(10): 4940–4950.

    Article  Google Scholar 

  25. Lee S.H., Kakati N., Maiti J., et al., Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells. Thin Solid Films, 2013, 529: 374–379.

    Article  ADS  Google Scholar 

  26. Bermúdez Agudelo M.C., Hampe M., Reiber T., et al., Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells. Materials, 2020, 13(9): 2096.

    Article  ADS  Google Scholar 

  27. Ribeirinha P., Abdollahzadeh M., Boaventura M., et al., H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell. Applied Energy, 2017, 188: 409–419.

    Article  Google Scholar 

  28. Nayebossadri S., Fletcher S., Speight J.D., et al., Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes. Journal of Membrane Science, 2016, 515: 22–28.

    Article  Google Scholar 

  29. Krastev V.K., Falcucci G., Jannelli E., et al., 3D CFD modeling and experimental characterization of HT PEM fuel cells at different anode gas compositions. International Journal of Hydrogen Energy, 2014, 39(36): 21663–21672.

    Article  Google Scholar 

  30. Ahsan M.N., Paul C.P., Kukreja L.M., et al., Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation. Journal of Materials Processing Technology, 2011, 211(4): 602–609.

    Article  Google Scholar 

  31. Jiao K., Alaefour I.E., Li X., Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel, 2011, 90(2): 568–582.

    Article  Google Scholar 

  32. Ju H., Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells. Journal of Power Sources, 2009, 191(2): 259–268.

    Article  ADS  Google Scholar 

  33. Ribeirinha P., Boaventura M., Lopes J.C.B., et al., Study of different designs of methanol steam reformers: Experiment and modeling. International Journal of Hydrogen Energy, 2014, 39(35): 19970–19981.

    Article  Google Scholar 

  34. Peppley B.A., Amphlett J.C., Kearns L.M., et al., Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Applied Catalysis A: General, 1999, 179(1): 31–49.

    Article  Google Scholar 

  35. Yin Y., Wang J.B., Yang X.L., et al., Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. International Journal of Hydrogen Energy, 2014, 39(25): 13671–13680.

    Article  Google Scholar 

  36. Huang H., Zhou Y.B., Deng H., et al., Modeling of high temperature proton exchange membrane fuel cell start-up processes. International Journal of Hydrogen Energy, 2016, 41(4): 3113–3127.

    Article  Google Scholar 

  37. Sousa T., Mamlouk M., Scott K., An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chemical Engineering Science, 2010, 65(8): 2513–2530.

    Article  Google Scholar 

  38. Shen Y., Kwan T.H., Yao Q.H., Performance numerical analysis of thermoelectric generator sizing for integration into a high temperature proton exchange membrane fuel cell. Applied Thermal Engineering, 2020, 178: 115486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Shi, Y. & Cai, N. Modeling of Packed Bed Methanol Steam Reformer Integrated with Tubular High Temperature Proton Exchange Membrane Fuel Cell. J. Therm. Sci. 32, 81–92 (2023). https://doi.org/10.1007/s11630-022-1764-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1764-9

Keywords

Navigation