Skip to main content
Log in

Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

To understand the effect of climate change on constitutive antioxidant and biochemical metabolites in Western Himalayas, five medicinal herbs were selected and grown at two altitudes in Jammu (305 m) and Srinagar (1730 m) with subtropical and temperate climates, respectively. Significant variations were observed in phenols and flavonoids in Hypericum perforatum L., Matricaria chamomilla L., Thymus vulgaris L., Cynara cardunculus L. and Echinacea purpurea L. growing at two locations. High altitude temperate site show variable (up to 13 fold) increase in their content. Proteins (1.3 – 1.8 times), sugars (2.8 – 4.1 times) and free amino acid (1.04 – 1.22 times) were also higher at Srinagar (1730 m). Within these plants, H. perforatum and M. chamomilla have shown higher accumulation of phenols, xanthophylls and proline even at subtropical environment in Jammu (305 m) suggesting potential for increasing their geographical area. The results demonstrate that changing environmental conditions significantly affect the bioactive constituents, which accumulate as a defence strategy by these temperate plants. Their medicinal significance during climate change scenario has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agati G, Azzarello E, Pollastri S, et al. (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196: 67–76. DOI: 10.1016/j.plantsci.2012.07.014

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant soil 39: 205–207. DOI: 10.1007/BF00018060

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change 85: 159–177. DOI: 10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bidart-Bouzat MG, Imeh-Nathaniel A (2008) Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology 50: 1339–1354. DOI: 10.1111/j.1744-7909.2008.00751.x

    Article  Google Scholar 

  • Bravo S, García- Alonso J, Martín- Pozuelo G, et al. (2012) The influence of post-harvest UV-C hormesis on lycopene, ß-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International 49: 296–302. DOI: 10.1016/j.foodres.2012.07.018

    Article  Google Scholar 

  • Dedemo GC, Rodrigues FA, Roberto PG, et al. (2013) Osmoprotection in sugarcane under water deficit conditions. Plant Stress 7: 1–7.

    Google Scholar 

  • Deineka VI, Sorokopudov VN, Deineka LA, et al. (2008) Studies of Physalis alkekengi L. fruits as a source of xanthophylls. Pharmaceutical Chemistry Journal 42: 87–88. DOI: 10.1007/s11094-008-0065-2

    Google Scholar 

  • Demmig-Adams B, Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in plant sciences 1: 21–26. DOI: 10.1016/S1360-1385(96)80019-7

    Article  Google Scholar 

  • Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000 prime reports 6:37. DOI: 10.12703/P6-37

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell Online 17: 1866–1875. DOI: 10.1105/tpc.105.033589

    Article  Google Scholar 

  • Gadgil M, Rao PS (1998) Nurturing Biodiversity: An Indian Agenda. Centre for Environment Education. New Delhi, India.

    Google Scholar 

  • Gairola S, Shariff NM, Bhatt A, et al. (2010) Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. Journal of Medicinal Plants Research 4: 1825–1829. DOI: 10.5897/JMPR10.354

    Google Scholar 

  • Geetha S, Sai-Ram M, Mongia SS, et al. (2003) Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium(VI) induced oxidative stress in albino rats. Journal of Ethnopharmcology 87: 247–251. DOI: 10.1016/S0378-8741(03)00154-5

    Article  Google Scholar 

  • Guy C, Kaplan F, Kopka J, et al. (2008) Metabolomics of temperature stress. Physiologia Plantarum 132: 220–235. DOI: 10.1111/j.1399-3054.2007.00999.x

    Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68: 2831–2846. DOI: 10.1016/j.phytochem.2007.09.017

    Article  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience Biotechnology Biochemistry 72: 1143–1154. DOI: 10.1271/bbb.80062

    Article  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBABioenergetics 1817: 182–193. DOI: 10.1016/j.bbabio.2011.04.012

    Article  Google Scholar 

  • Jan S, Kamili AN, Hamid R, et al. (2014) Variation in adaptation mechanisms of medicinal herbs to the extreme winter conditions across the North Western Himalaya. Israel Journal of Plant Science 61: 1–11. DOI: 10.1080/07929978.2014.939828

    Article  Google Scholar 

  • Kaur T, Hussain K, Koul S, et al. (2013a) Evaluation of Nutritional and Antioxidant Status of Lepidium latifolium L: A Novel Phytofood from Ladakh. Plos One 8: e69112. DOI: 10.1371/journal.pone.0069112

    Article  Google Scholar 

  • Kaur T, Bhat HA, Raina A, et al. (2013b) Glutathione regulates enzymatic antioxidant defence with differential thiol content in perennial pepperweed and helps adapting to extreme environment. Acta Physiologiae Plantarum 35: 2501–2511. DOI: 10.1007/s11738-013-1286-x

    Article  Google Scholar 

  • Khandaker L, Akond ASMG, Ali MB, et al. (2010) Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Scientia Horticulturae 123: 289–294. DOI: 10.1016/j.scienta.2009.09.012

    Article  Google Scholar 

  • Khanduri VP, Sharma CM, Singh SP (2008) The effects of climate change on plant phenology. Environmentalist 28:143–147.

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22: 569–574. DOI: 10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, et al. (1951) Protein measurement with the folin-phenol reagent. The Journal of Biological Chemistry 193: 265–275.

    Google Scholar 

  • Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244: 53–73. DOI: 10.1007/s00709-010-0161-5

    Article  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology 10: 515–525. DOI: 10.1023/A:1008076231267

    Article  Google Scholar 

  • Metlen KL, Aschehoug ET, Callaway RM (2009) Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environment 32: 641–653. DOI: 10.1111/j.1365-3040.2008.01910.x.

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89: 332–341. DOI: 10.1890/07-0068.1

    Article  Google Scholar 

  • Mooney HA, Drake BG, Luxmoore RJ, et al. (1991) Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41: 96–104.

    Article  Google Scholar 

  • Nägele T, Heyer AG (2013) Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. New Phytologist 198: 777–787. DOI: 10.1111/nph.12201

    Article  Google Scholar 

  • Nautiyal MC, Nautiyal BP, Prakash V (2004) Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24: 125–134. DOI: 10.1007/s10669-004-4803-z

    Article  Google Scholar 

  • Noctor G, Mhamdi A, Chaouchi S, et al. (2012) Glutathione in plants: an integrated overview. Plant Cell Environment 35: 454–484. DOI: 10.1111/j.1365-3040.2011.02400.x

    Article  Google Scholar 

  • Okuda T, Masuda Y, Yamanka A, et al. (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology 97:12651267. DOI: 0032-0889/91/97/1265/03/$01.00/0

    Article  Google Scholar 

  • Portes MT, Damineli DSC, Ribeiro RV, et al. (2010) Evidence of higher photosynthetic plasticity in the early successional Guazuma ulmifolia Lam. compared to the late successional Hymenaea courbaril L. grown in contrasting light environments. Brazilian Journal of Biology 70: 75–83. DOI: 10.1590/S1519-69842010000100011

    Google Scholar 

  • Potters G, Horemans N, Jansen MA (2010) The cellular redox state in plant stress biology–a charging concept. Plant Physiology and Biochemistry 48: 292–300. DOI: 10.1016/j.plaphy.2009.12.007

    Article  Google Scholar 

  • Queval G, Thominet D, Vanacker H, et al. (2009) H2O2 activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Molecular Plant 2: 344–356. DOI: 10.1093/mp/ssp002

    Article  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biologia Plantarum 45 481–487. DOI: 10.1023/A:1022308229759

    Article  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behaviour 6: 1720–1731. DOI: 10.4161/psb. 6.11.17613

    Article  Google Scholar 

  • Rao ML, Savithramma N (2012) Quantification of Primary and Secondary Metabolites of Svensonia hyderobadensis–A Rare Medicinal Plant. International Journal of Pharmacy and Pharmaceutical Sciences 4: 519–521.

    Google Scholar 

  • Salick J, Fangb Z, Byg A (2009) Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Global Environment Change 19: 147–155. DOI: 10.1016/j.gloenvcha.2009.01.008

    Article  Google Scholar 

  • Samant SS, Dhar U, Palni LMS (1998) Medicinal Plants of Indian Himalaya: Diversity, Distribution Potential Values. Gyan Prakash, Nainital, India.

    Google Scholar 

  • Sawhney SK, Singh R (2009) Introductory practical biochemistry, 2nd ed. Narosa Publishing House, New Delhi, India.

    Google Scholar 

  • Silvertown J (1998) Plant phenotypic plasticity and noncognitive behaviour. Trends in Ecology and Evolution 13: 255–256. DOI: 10.1016/S0169-5347(98)01398-6

    Article  Google Scholar 

  • Snow MD, Bard RR, Olszyk DM, et al. (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiologia Plantarum 117: 352–358. DOI: 10.1034/j.1399-3054.2003.00035.x

    Article  Google Scholar 

  • Soobrattee MA, Neergheen VS, Luximon-Ramma A, et al. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research-Fundamental and Molecular Mechanisms of mutagenesis 579: 200–213. DOI: 10.1016/j.mrfmmm.2005.03.023

    Article  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behaviour 3: 525.

    Article  Google Scholar 

  • Vergeer LHT, Aarts TL, De Groot JD (1995) The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquatic Botany 52: 35–44. DOI: 10.1016/0304-3770(95)00480-N

    Article  Google Scholar 

  • Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiology 27: 1253–1259. DOI: 10.1093/treephys/27.9.1253

    Article  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany 56: 435–447. DOI: 10.1093/jxb/eri060

    Article  Google Scholar 

  • Zhang SB, Zhou ZK, Hu H, et al. (2005) Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. Forest Ecology and Management 212: 291–301. DOI: 10.1016/j.foreco.2005.03.031

    Article  Google Scholar 

  • Zhu HX, Shi Y, Zhang QN, et al. (2005) Applying 3, 5-dinitrosalicylic Acid (DNS) Method to Analyzing the Content of Potato Reducing Sugar. Chinese Potato 5: 002.

    Google Scholar 

  • Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry 43: 977–984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Vyas.

Additional information

http://orcid.org/0000-0002-7541-5302

http://orcid.org/0000-0003-4540-5805

http://orcid.org/0000-0002-5053-5906

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Bhat, R. & Vyas, D. Effect of contrasting climates on antioxidant and bioactive constituents in five medicinal herbs in Western Himalayas. J. Mt. Sci. 13, 484–492 (2016). https://doi.org/10.1007/s11629-014-3380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3380-y

Keywords

Navigation