Skip to main content
Log in

Transverse thin cell layer (tTCL) technology: a promising tool for micropropagation of Centratherum punctatum Cass.

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The present study describes an efficient protocol for the micropropagation of Centratherum punctatum Cass. through transverse thin cell layers (tTCLs). The effect of plant growth regulators (PGRs), thickness of tTCLs, and source of tTCLs were evaluated. The tTCLs of varying thickness (0.5 to 5.0 mm) were excised from 10-d-old leaf and 45-d-old node and cultured on Murashige and Skoog (MS) medium supplemented with various concentrations of PGRs (BAP, TDZ, KN; 0.1 to 2.0 mg L−1), alone or in combination with NAA (0.1 to 1.0 mg L−1) for shoot induction. The leaf and node tTCLs responded with direct shoot regeneration. A significant effect of thickness or width on shoot induction was observed. For leaf, 1.0-mm-wide and for node 2.0-mm-thick tTCLs showed a maximum response. MS medium supplemented with 1.5 mg L−1 TDZ and 1.0 mg L−1 BAP in combination with 0.2 mg L−1 NAA was found to be optimum for shoot induction from tTCLs of leaf (96% response with 41.5 shoots per explant) and node (87% response with 11.9 shoots per explant), respectively. Rhizogenesis was obtained when micropropagated shoots were transferred to half strength MS medium supplemented with various concentrations (0.25 to 2.0 mg L−1) of IBA. The rooted plantlets were eventually acclimatized and transferred to soil. The clonal fidelity assessment by SCoT markers of the mother plant and micropropagated plants revealed their genetic similarity. Chlorophyll content estimation indicated lower levels in in vitro plants, which increased to a comparable level to that of field-grown plants after 3 mo of acclimatization, showing absence of stress during acclimatization. The procedure described here is a promising tool for micropropagation of C. punctatum as it produces high-frequency healthy shoots from a minimum explant source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abdolinejad R, Shekafandeh A, Jowkar A, Gharaghani A, Alemzadeh A (2020) Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell Tiss Org Cult 143:131–144

    Article  CAS  Google Scholar 

  • Ajithan C, Vasudevan V, Sathish D, Sathish S, Krishnan V, Manickavasagam M (2019) The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tiss Org Cult 139:547–561

    Article  CAS  Google Scholar 

  • Alves FV, Loeuille BF (2021) Geographic distribution patterns of species of the subtribe Lychnophorinae (Asteraceae: Vernonieae). Rodriguésia 72:e02072019. https://doi.org/10.1590/2175-7860202172072

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora K, Rai MK, Sharma AK (2022) Tissue culture mediated biotechnological interventions in medicinal trees: recent progress. Plant Cell Tiss Org Cult 150:267–287

    Article  Google Scholar 

  • Baskaran P, Kumari A, Van Staden J (2018) In vitro propagation via organogenesis and synthetic seeds of Urginea altissima (Lf) Baker: a threatened medicinal plant. 3 Biotech 8:18. https://doi.org/10.1007/s13205-017-1028-7

  • Bevelle CA, Handy GA, Segal RA, Cordell GA, Farnsworth NR (1981) Isocentratherin, a cytotoxic germacranolide from Centratherum punctatum (Compositae). Phytochemistry 20:1605–1607

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumar V, Van Staden J (2017) Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. S African J Bot 108:294–302

    Article  CAS  Google Scholar 

  • Bhawna AMZ, Arya L, Verma M (2017) Use of SCoT markers to assess the gene flow and population structure among two different population of bottle gourd. Plant Gene 9:80–86

    Article  CAS  Google Scholar 

  • Burim RV, Canalle R, Lopes JL, Vichnewski W, Takahashi CS (2001) Genotoxic action of the sesquiterpene lactone centratherin on mammalian cells in vitro and in vivo. Teratog Carcinog Mutagen 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LC, Vilela BJ, Vidigal P, Mullineaux PM, Amâncio S (2006) Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. Int J Plant Sci 167:759–770

    Article  CAS  Google Scholar 

  • Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4:173–178

    Article  Google Scholar 

  • Chiappeta AD, de Mello JF, Maciel GM (1983) Higher plants with biological activity- plants of Pernambuco. Rev Inst Antibiot 21:43–50

    Google Scholar 

  • Chitra B, Brindha P (2014) Studies on preliminary phytochemical screening of different extract of Centratherum punctatum Cass.- a traditional wound healer. Int J Pharm Sci Res 6:19–22

    Google Scholar 

  • Chitra B, Brindha P (2015) Antimicrobial activity of ethanol and aqueous extract of Centratherum punctatum Cass. World J Pharm Pharm Sci 4:1126–1131

    CAS  Google Scholar 

  • Chitra B, Brindha P, Vijayakumar AB (2016) Protease activity of floral extracts of Centratherum punctatum Cass. a wound healing herb. World J Pharm Res 5:1079–1083

    CAS  Google Scholar 

  • Chirumamilla P, Gopu C, Jogam P, Taduri S (2021) Highly efficient rapid micropropagation and assessment of genetic fidelity of regenerants by ISSR and SCoT markers of Solanum khasianum Clarke. Plant Cell Tiss Org Cult 144:397–407

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  • Croom LA, Jackson CL, Vaidya BN, Parajuli P, Joshee N (2016) Thin cell layer (TCL) culture system for herbal biomass production and genetic transformation of Bacopa monnieri L. Wettst Am J Plant Sci 7:1232–1245

    Article  Google Scholar 

  • David JP (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243

    Article  Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2011) Adventitious shoot regeneration from leaf thin cell layers in apple. Sci Hortic 127:460–463

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1989) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Duta-Cornescu G, Constantin N, Pojoga D-M, Nicuta D, Simon-Gruita A (2023) Somaclonal variation- advantage or disadvantage in micropropagation of the medicinal plants. Int J Mol Sci 24:838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin G, Jeyachandran R, Ignacimuthu S (2000) Factors affecting regeneration of pigeon pea (Cajanus cajan L. Millsp) from mature embryonal axes. Plant Growth Regul 30:31–36

    Article  CAS  Google Scholar 

  • Gendy C, Sene M, Van Le B, Vidal J, Thanh KV (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench. Plant Cell Rep 15:900–904

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya AB, Charles G, Branchard M (2008) Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars of Brassica napus L. Plant Cell Tiss Org Cult 92:25–30

    Article  Google Scholar 

  • Hedayat H, Abdi Gh, Khosh-Khui M (2009) Regeneration via direct organogenesis from leaf and petiole segments of pyrethrum Tanacetum cinerariifolium (Trevir.) Schultz-Bip. Am- Eurasian J Agric Environ Sci 6:81–87

    CAS  Google Scholar 

  • Hieu T, Linh NT, Tung HT, Bao HG, Nguyen CD, Nhut DT (2018) Stimulation of shoot regeneration through leaf thin cell layer culture of Passiflora edulis Sims. Vietnam J Biotech 16:669–677

    Article  Google Scholar 

  • Junior FM, Covington CL, de Albuquerque AC, Lobo JF, Borges RM, de Amorim MB, Polavarapu PL (2015) Absolute configuration of (−) - centratherin, a sesquiterpenoid lactone, defined by means of chiroptical spectroscopy. J Nat Prod 25:2617–2623

    Article  Google Scholar 

  • Lakshmanan P, Loh CS, Goh CJ (1995) An in vitro method for rapid regeneration of a monopodial orchid hybrid Aranda deborah using thin section culture. Plant Cell Rep 14:510–514

    Article  CAS  PubMed  Google Scholar 

  • Leguillon S, Charles G, Branchard M (2003) Plant regeneration from thin cell layers in Spinacia oleracea. Plant Cell Tiss Org Cult 74:257–265

    Article  CAS  Google Scholar 

  • Lemma DT, Banjaw DT, Megersa HG (2020) Micropropagation of medicinal plants. Int J Plant Breed Crop Sci 7:796–802

    Google Scholar 

  • Loberant B, Altman A (2010) Micropropagation of plants. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology. Wiley, New York, pp 1–17. https://doi.org/10.1002/9780470054581.eib442

  • Madhumitha KM, Anbumalarmathi J, Sharmili SA, Nandhini G, Priya GS (2020) A comparative study of in vivo plant and in vitro callus extracts of Centratherum punctatum Cass. Annu Res Rev Biol 18:1–13

    Article  Google Scholar 

  • Mahesh B, Satish S (2008) Antimicrobial activity of some important medicinal plants against plant and human pathogens. World J Agri Sci 4:839–843

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar M, Muthukrishnan S, Kumar TS, Rao MV (2020) Direct regeneration, microshoot recovery and assessment of genetic fidelity in Helicteres isora L., a medicinally important tree. Biocatal Agric Biotechnol 23:101415

    Article  Google Scholar 

  • Nhut DT, Hai NT, Huyen PX, Huong DT, Hang NTD, Teixeira da Silva JA (2005) Thidiazuron induces high frequency shoot bud formation from Begonia petiole transverse thin cell layer culture. Propag Ornam Plants 5:149–155

    Google Scholar 

  • Nhut DT, Teixeira da Silva JA, Van Le B, Van Tran Thanh K (2003a) Thin cell layer studies of vegetable, leguminous and medicinal plants. In: Nhut DT, Van Le B, Van Tran Thanh K, Thorpe T (eds) Thin cell layer culture system: regeneration and transformation applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 387–425

    Chapter  Google Scholar 

  • Nhut DT, Teixeira da Silva JA, Van Le B, Van Tran Thanh K (2003b) Organogenesis of cereals and grasses by using thin cell layer technique. In: Nhut DT, Van Le B, Van Tran Thanh K, Thorpe T (eds) Thin cell layer culture system: regeneration and transformation applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 427–449

    Chapter  Google Scholar 

  • Nhut DT, Van Le B, Tanaka M, Van KT (2001a) Shoot induction and plant regeneration from receptacle tissues of Lilium longiflorum. Sci Hortic 87:131–138

    Article  Google Scholar 

  • Nhut DT, Van Le B, Van KT (2001b) Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin. In Vitro Cell Dev Biol - Plant 37:44–49

    Article  Google Scholar 

  • Ogunwande IA, Olawore NO, Usman L (2005) Composition of the leaf oil of Centratherum punctatum Cass. growing in Nigeria. J Essent Oil Res 17:496–498

    Article  CAS  Google Scholar 

  • Ohki S (1994) Scanning electron microscopy of shoot differentiation in vitro from leaf explants of the African violet. Plant Cell Tiss Org Cult 36:157–162

    Article  CAS  Google Scholar 

  • Ohno N, McCormick S, Mabry TJ (1979) Centratherin, a new germacranolide from Centratherum punctatum. Phytochemistry 18:681–668

    Article  CAS  Google Scholar 

  • Pawar NK, Arumugam N (2011) Leaf extract of Centratherum punctatum exhibits antimicrobial, antioxidant and anti-proliferative properties. Asian J Pharm Clin Res 4:71–76

    Google Scholar 

  • Rai MK (2023) Start codon targeted (SCoT) polymorphism marker in plant genome analysis: current status and prospects. Planta 257:34

    Article  CAS  PubMed  Google Scholar 

  • Ranghoo-Sanmukhiya VM (2021) Somaclonal variation and methods used for its detection. In: Siddique I (ed) Propagation and genetic manipulation of plants. Springer, Singapore, pp 1–18

  • Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  CAS  PubMed  Google Scholar 

  • Sadhu S, Jogam P, Thampu RK, Abbagani S, Penna S, Peddaboina V (2020) High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tiss Org Cult 2:1–3

    Google Scholar 

  • Satyal P, Hieu HV, Lai DT, Ngoc NTB, Hung NH, Setzer WN (2018) The essential oil compositions of Centratherum punctatum growing wild in Vietnam. Am J Essent Oil 6:15–18

    Google Scholar 

  • Sawant SV, Singh PK, Gupta SK, Madanala R, Tuli R (1999) Conserved nucleotide sequence in highly expressed genes in plants. J Genet 78:1–8

    Article  Google Scholar 

  • Sethy R, Kullu B (2022) Micropropagation of ethnomedicinal plant Calotropis sp. and enhanced production of stigmasterol. Plant Cell Tiss Org Cult 149:147–158

    Article  CAS  Google Scholar 

  • Shoyeb M, Kanis Fatema M, Sarkar AR, Rahman A, Rahman SM (2020) Efficient regeneration of tobacco (Nicotiana tabacum L.) plantlets from cotyledon, hypocotyl and leaf explants: an excellent model plant for gene function analysis. Curr J Appl Sci Tech 39:1–9

    Article  Google Scholar 

  • Silpa P, Thomas TD (2021) High-frequency shoot regeneration from flower bud derived callus of Gymnostachyum febrifugum Benth., an endemic medicinal plant to the Western Ghats. Plant Cell Tiss Org Cult 147:221–288

    Article  CAS  Google Scholar 

  • Silvertand B, Lavrijsen P, Van Harten A (1992) In vitro multiplication of leek (Allium peloprasum L.) by using segments of the flower stalk. Allium Improv News Lett 2:21–23

    Google Scholar 

  • Singh N, Kumaria S (2020) A combinational phytomolecular-mediated assessment in micropropagated plantlets of Coelogyne ovalis Lindl.: a horticultural and medicinal orchid. Proc Natl Acad Sci, India Section B: Biol Sci 90:455–466

    Article  CAS  Google Scholar 

  • Singh SK, Rai MK, Sahoo L (2012) An improved and efficient micropropagation of Eclipta alba through transverse thin cell layer culture and assessment of clonal fidelity using RAPD analysis. Ind Crops Prod 37:328–333

    Article  CAS  Google Scholar 

  • Sivasubramanian R, Brindha P (2013) In-vitro cytotoxic, antioxidant and GC-MS studies on Centratherum punctatum Cass. Int J Pharm Pharm Sci 5:364–367

    Google Scholar 

  • Sivasubramanian R, Brindha P (2014) Centratherum punctatum Cass. - a herbal dietary supplement in the management of cancer. Int J Pharm Pharm Sci 6:73–74

    Google Scholar 

  • Sreekumar S, Seeni S, Pushpangadan P (2000) Micropropagation of Hemidesmus indicus for cultivation and production of 2-hydroxy 4-methoxy benzaldehyde. Plant Cell Tiss Org Cult 62:211–218

    Article  CAS  Google Scholar 

  • Sudhakaran S, Teixeira da Silva JA, Sreeramanan S (2006) Test tube bouquets - in vitro flowering. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, London, UK, pp 336–346

  • Swarna J, Ravindharan R (2013) In vitro organogenesis from leaf and transverse thin cell layer derived callus cultures of Talinum triangulare (Jacq.) Willd. Plant Growth Regul 70:79–87

    Article  CAS  Google Scholar 

  • Taylor NJ, Van Staden JA (2006) Towards an understanding of the manipulation of in vitro flowering. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. (Vol IV), Global Science Books, London, UK, pp 1–22

  • Teixeira da Silva JA, Nhut DT (2003) Thin cell layers and floral morphogenesis, floral genetics and in vitro flowering. In: Nhut DT, Van Le B, Van Tran Thanh K, Thorpe T (eds) Thin cell layer culture system: regeneration and transformation applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 65–134

    Chapter  Google Scholar 

  • Teixeira da Silva JA, Tanaka M (2011) Thin cell layers: the technique. In: Davey M, Anthony P (eds) Plant cell culture: methods express. Wiley-Blackwell, Chichester, UK, pp 25–37

    Google Scholar 

  • Thomas TD, Yoichiro H (2010) In vitro propagation for the conservation of a rare medicinal plant Justicia gendarussa Burm. f. by nodal explants and shoot regeneration from callus. Acta Physiol Plant 32:943–950

    Article  Google Scholar 

  • Tosens T, Niinemets Ü, Vislap V, Eichelmann H, Castro DÍEz P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35:839–856

    Article  CAS  PubMed  Google Scholar 

  • Van Tran Thanh M (1973) In vitro control of de novo flower, bud, root, and callus differentiation from excised epidermal tissues. Nature 246:44–45

    Article  Google Scholar 

  • Tubić L, Savić J, Mitić N, Milojević J, Janošević D, Budimir S, Zdravković-Korać S (2016) Cytokinins differentially affect regeneration, plant growth and antioxidative enzymes activity in chive (Allium schoenoprasum L.). Plant Cell Tiss Org Cult 124:1–14

    Article  Google Scholar 

  • Vaidya BN, Jackson CL, Perry ZD, Dhekney SA, Joshee N (2016) Agrobacterium-mediated transformation of thin cell layer explants of Scutellaria ocmulgee small: a rare plant with anti-tumor properties. Plant Cell Tiss Org Cult 127:57–69

    Article  CAS  Google Scholar 

  • Van-Huylenbroeck JM, Piqueras A, Debergh PC (2000) The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci 155:59–66

    Article  CAS  Google Scholar 

  • Vdawale AV, Mehta-bhatt P, Dave AM (2004) Rapid in vitro propagation of Ashwagandha (Withania somnifera) through axillary bud multiplication and indirect organogenesis. Phytomorphology 54:59–64

    Google Scholar 

  • Welander M (1988) Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J Plant Physiol 132:738–744

    Article  Google Scholar 

  • Whistler WA (2000) Tropical ornamentals: a guide. Timber Press, Portland, Oregon, pp 541–542

    Google Scholar 

  • World Health Organisation (2000) Quality control methods for medicinal plant materials. WHO, Geneva, Switzerland

    Google Scholar 

  • Yang Y-J, Tong Y-G, Yu G-Y, Zhang S-B, Huang W (2018) Photosynthetic characteristics explain the high growth rate for Eucalyptus camaldulensis: implications for breeding strategy. Ind Crops Prod 124:186–191

    Article  CAS  Google Scholar 

  • Yadav SP, Ibaraki Y, Dutta Gupta S (2010) Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tiss Org Cult 100:183–188

    Article  CAS  Google Scholar 

  • Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P (2022) Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27:313–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Wang W, Feng FS, Wu F, Yang ZQ, Wang WJ (2007) High-frequency shoot regeneration through transverse thin cell layer culture in Dendrobium candidum Wall Ex Lindl. Plant Cell Tiss Org Cult 90:131–139

    Article  Google Scholar 

Download references

Funding

Aswathi N. V. thankfully acknowledges the financial support from CSIR, Govt. of India, in the form of JRF and SRF (Award No. 09/1108(0019)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

ANV collected materials and performed the experiments, evaluated data, and wrote the manuscript. TDT designed the experiments, contributed to writing, and corrected the manuscript.

Corresponding author

Correspondence to T. Dennis Thomas.

Ethics declarations

Ethical approval

This research paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswathi, N.V., Thomas, T.D. Transverse thin cell layer (tTCL) technology: a promising tool for micropropagation of Centratherum punctatum Cass.. In Vitro Cell.Dev.Biol.-Plant 59, 340–353 (2023). https://doi.org/10.1007/s11627-023-10348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-023-10348-2

Keywords

Navigation