Skip to main content
Log in

Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana Bertoni

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Melatonin has been shown to play a variety of roles in regulating plant growth and response to various abiotic stresses, but its main function remains unclear in response to NaCl toxicity. The aim of the current study was to evaluate the effect of melatonin (0, 5, 10, and 20 μM) on growth, photosynthetic pigments, compatible solutes, ionic homeostasis, enzymatic and non-enzymatic antioxidants, the content of steviol glycosides, and expression of kaurenoic acid hydroxylase (KAH) and uridine diphosphate glycosyltransferase (UGTs) genes in stevia under 25 mM NaCl in in vitro culture. The results showed that in the presence of 25 mM NaCl, melatonin at 5 and 10 μM improved growth parameters, photosynthetic pigments, proline, and soluble sugar contents and reduced electrolyte leakage in stevia leaves. Interestingly, melatonin (5 and 10 μM) reduced the accumulation of malondialdehyde and the level of ROS by improving the redox state of the ascorbate-glutathione cycle and the activity of antioxidant enzymes. Additionally, melatonin decreased the accumulation of Cl and Na and improved the accumulation of K, N, Ca, and P, thus maintaining the ionic balance in leaves under NaCl toxicity. Melatonin increased the accumulation of rebaudioside A and stevioside in the leaves under salinity by upregulating the expression level of KAH and UGTs genes. However, high concentrations of melatonin (20 μM) exacerbated the negative effects of salinity and further reduced stevia growth under salinity. Therefore, the current study indicates the protective role of melatonin in the appropriate concentration in stevia against NaCl toxicity in in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abrol E, Vyas D, Koul S (2012) Metabolic shift from secondary metabolite production to induction of antioxidative enzymes during NaCl stress in Swertia chirata Buch. -Ham. Acta Physiol Plant 34:541–546

    Article  CAS  Google Scholar 

  • Afreen F, Zobayed SMA, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41:108–115

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, Zandalinas SI, Vives-Peris V, Pérez-Clemente RM, Gómez-Cadenas A (2017) Physiological, metabolic, and molecular responses of plants to abiotic stress, 2nd edn. Springer International Publishing, Basel, pp 1–35

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009) Chemical stress by different agents affects the melatonin content of barley roots. J Pineal Res 46:295–299

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbet-Massin C, Giuliano S, Alletto L, Daydé J, Berger M (2015) Nitrogen limitation alters biomass production but enhances steviol glycoside concentration in Stevia rebaudiana Bertoni. PLoS One 10(7):e0133067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bender C, Graziano S, Zimmerman BF (2015) Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties. Int J Food Sci Nutr 66:553–558

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM, Williams WL (1976) New, rapid, sensitive method for protein determination. Fed Proc 35:274

    Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium-deficiency and high light-enhance activities of superoxide-dismutase, ascorbate peroxidase, and glutathione-reductase in bean-leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115:484–496

    Article  CAS  PubMed  Google Scholar 

  • Ceunen S, Geuns JMC (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu L, Lu B, Ma T, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Bai Z, Li C (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One 15(1):e0228241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166(3):324–328

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Ashwath N, Hill CB, Callahane DL, Dias DA, Jayasinghe DS, Midmore DJ, Roessner U (2018) Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiol Biochem 129:56–70

    Article  CAS  PubMed  Google Scholar 

  • Duran RE, Kilic S, Coskun Y (2019) Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cell Dev Biol Plant 55:468–475

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P (2018) Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol 45:1096–1109

    Article  CAS  PubMed  Google Scholar 

  • Forouzi A, Ghasemnezhad A, Ghorbani-Nasrabad R (2019) Effects of growth stimulator microbes on growth and ions concentration of stevia under salinity stress conditions. Int J Hort Sci Tech 6(2):217–236

    CAS  Google Scholar 

  • Gantait S, Banerjee J (2017) Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia. Sugar Tech 20:1–10

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018a) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russ J Plant Physiol 65(6):898–907

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018b) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol 20(4):729–736

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H, Ranjbar M (2019) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Rep 38(9):1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C (2020) Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicol Environ Saf 209:111793

    Article  PubMed  CAS  Google Scholar 

  • Ghorbani A, Zarinkamar F, Fallah A (2009) The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage. J Crop Breed 1:50–66

    Google Scholar 

  • Gupta P, Sharma S, Saxena S (2016) Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. J Appl Res Med Aromat Plants 3:160–167

    Google Scholar 

  • Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Irigoyen JJ, Einerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis, 1st edn. Prentice Hall of India Pvt. Ltd, New Delhi, pp 144–197

    Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:82

    Article  CAS  Google Scholar 

  • Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415–419

    Article  CAS  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitson R, Mellon M (1944) Colorimetric determination of phosphorus as molybdivanado phosphonic acid. Ind Eng Chem Res 16:379–383

    CAS  Google Scholar 

  • Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492:276–284

    Article  CAS  PubMed  Google Scholar 

  • Ladygin VG, Bondarev NI, Semenova GA, Smolov AA, Reshetnyak OV, Nosov AM (2008) Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol Plant 52(1):9–16

    Article  CAS  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53(3):298–306

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li J, Yuan F, Liu Y, Zhang M, Liu Y, Zhao Y, Wang B, Chen M (2020) Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biol 20:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YH, Pan KY, Hung CH, Huang HE, Chen CL, Feng TY, Huang LF (2013) Overexpression of Ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 14:20913–20929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Shabala S, Zhang J, Ma G, Chen D, Shabala L, Zeng F, Chen ZH, Zhou M, Venkataraman G, Zhao Q (2020) Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant Cell Environ 43(11):2591–2605

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucho SR, do Amaral MN, Auler PA, Bianchi VJ, Ferrer MÁ, Calderón AA, Braga EJB (2019) Salt stress-induced changes in in vitro cultured Stevia rebaudiana bertoni: effect on metabolite contents, antioxidant capacity and expression of steviol glycosides-related biosynthetic genes. J Plant Growth Regul 38:1341–1353

    Article  CAS  Google Scholar 

  • Mohamed AAA, Ceunen S, Geuns JMC, Van den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, David A, Yadav S, Baluška F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152:714–728

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissues. Physiol Plant 15:473–449

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Richman A, Swanson A, Humphrey T, Chapman R, Mcgarvey B, Pocs R, Brandle J (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J Pineal Res 52:38–46

    Article  CAS  PubMed  Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938

    Article  CAS  Google Scholar 

  • Shahverdi MA, Omidi H, Tabatabaei SJ (2019) Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J Saudi Soc Agric Sci 18(4):335–360

    Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20(2):353

    Article  PubMed Central  CAS  Google Scholar 

  • Simlat M, Ptak A, Skrzypek E, Warchoł M, Morańska E, Piórkowska E (2018) Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ 6:e5009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387

    CAS  Google Scholar 

  • Tan DX, Manchester LC, Mascio PD, Martinez GR, Prado FM, Reiter RJ (2007) Melatonin combats molecular terrorism at the mitochondrial level. FASEB J 21:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54(1):19–27

    Article  CAS  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Xiang G, Sun Q, Ni Y, Jin Z, Gao S, Yao Y (2019) Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic Res 6:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan F, Wei H, Li W, Liu Z, Tang S, Chen L, Ding C, Jiang Y, Ding Y, Li G (2020) Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicol Environ Saf 206:111358

    Article  CAS  PubMed  Google Scholar 

  • Yang WT, Wu W, Cai QR, Xu YW, Wei C (2011) Comparison on main agronomic traits and glucoside content in different Stevia rebaudiana new lines. Sugars China 3:26–29

    Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Chen A, Dandan L, Bin Y, Wei W (2013) Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J Agric Food Chem 61:5720–5726

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Zhang YQ (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Wang R, Meng J, Li Z, Wu Y, Tao J (2017) Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia jasminoides Ellis): leaf morphology, anatomy, physiology and transcriptome. Sci Rep 7:10423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou WJ, Leul M (1998) Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul 26:41–47

    Article  CAS  Google Scholar 

  • Zhou WJ, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27:99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vali Ollah Ghasemi-Omran or Abazar Ghorbani.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi-Omran, V.O., Ghorbani, A. & Sajjadi-Otaghsara, S.A. Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana Bertoni. In Vitro Cell.Dev.Biol.-Plant 57, 319–331 (2021). https://doi.org/10.1007/s11627-021-10161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10161-9

Keywords

Navigation