Skip to main content

Advertisement

Log in

Evolution of traditional agroforestry landscapes and development of invasive species: lessons from the Pyrenees (France)

  • Special Feature: Case Report
  • Agroforestry for Sustainable Landscape Management
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

The term agroforestry covers practices that are promoted to maintain or even enhance biodiversity. However, the relationship between agroforestry and invasive species is rarely addressed, even though the spread of such species is an important issue, not only ecologically but also economically and socially. Over the past few decades, humans have greatly accelerated the process of biological invasions, to such an extent that they are now recognized as the second cause of rapid decline in biodiversity. In France (as in other parts in Europe), abandonment of agricultural land in remote areas is a major problem having socio-economic, landscape and environmental implications. The objective of the research presented here was to find a method for studying the relationship between traditional agroforestry systems and invasive species, despite a lack of available data. We investigated the evolution of a traditional agroforestry system in the Pyrenean foothills, where invasive species are abundant, by implementing two complementary methods: (1) interviews highlighting the local stakeholders’ perception of landscape evolution, invasive species and the challenges they represent for the local traditional agroforestry landscapes, and (2) detailed mapping of an area occupied by invasive plants, by means of very high-resolution spatial technologies using UAV’s and aerial photography. The results show that invasive species have spread in relation with the abandonment of agricultural land, which has also led to “landscape closure” by the encroachment of natural afforestation. They also underline the difficulty of assessing the spread of invasive species. This situation is of major importance in terms of land-use planning, as the various stakeholders have different perceptions of the problem, and it raises questions about the sustainability of practices and territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akodéwou A, Oszwald J, Akpavi S, Gazull L, Akpagana K, Gond V (2019) Problématique des plantes envahissantes au sud du Togo (Afrique de l’Ouest): apport de l’analyse systémique paysagère et de la télédétection. Biotechnol Agron Soc Environ 23(2):88–103

    Google Scholar 

  • Alvarez-Taboada F, Paredes C, Julian-Pelaz J, Alvarez-Taboada F, Paredes C (2017) Mapping of the invasive species hakea sericea using unmanned aerial vehicle (UAV) and WorldView-2 imagery and an object-oriented approach. Remote Sens. https://doi.org/10.3390/rs9090913

    Article  Google Scholar 

  • Andersen MC, Adams H, Hope B, Powell M (2004) Risk assessment for invasive species. Risk Anal 24(4):787–793

    Google Scholar 

  • Antrop M (2005) Why landscapes of the past are important for the future. Landsc Urban Plann 70(1–2):21–34

    Google Scholar 

  • Arim M, Abades S, Neill PE, Lima M, Marquet PA (2006) Spread dynamics of invasive species. PNAS 103(2):374–378

    CAS  Google Scholar 

  • Atramentowicz M, Barbault R (2010) Les invasions biologiques, une question de natures et de sociétés. Editions Quae, Versailles

    Google Scholar 

  • Baldock D, Beaufoy G, Brouwer F, Godeschalk F (1996) Farming at the margins: Abandonment or Redeployment of Agricultural Land in Europe. Institute for European Environmental Policy, Agricultural Economics Research Institute, London/The Hague

    Google Scholar 

  • Baret F, Guyot G, Major DJ (1989) TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of the 12th Canadian symposium on remote sensing geoscience and remote sensing symposium, IEEE, pp 1355–1358

  • Barney JN (2016) Invasive plant management must be driven by a holistic understanding of invader impacts. Appl Veg Sci 19(2):183–184

    Google Scholar 

  • Blanchet A, Gotman A (2010) L’enquête et ses méthodes, l’entretien. Armand Colin, Paris

    Google Scholar 

  • Bradley BA (2014) Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invas 16:1411–1425

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Buijs AE, Pedroli B, Luginbühl Y (2006) From hiking through farmland to farming in a leisure landscape: changing social perceptions of the European landscape. Landsc Ecol 21:375–389. https://doi.org/10.1007/s10980-005-5223-2

    Article  Google Scholar 

  • Clark WC, Dickson NMF (2003) Sustainability science: the emerging research program. Proc Natl Acad Sci 100(14):8059–8061

    CAS  Google Scholar 

  • Cordeiro ADAC, Coelho SD, Ramos NC, Meira-Neto JAA (2018) Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas. Agrofor Syst 92(6):1495–1505

    Google Scholar 

  • Corriol G (2016) Massif du Monné, vallée de l’Oussouet (Identifiant national: 730011645, ZNIEFF Continentale de type 2). Conservatoire botanique national des Pyrénées et de Midi-Pyrénées, INPN, SPN-MNHN, Paris, p 29p

    Google Scholar 

  • Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23(2):104–112

    Google Scholar 

  • Daehler CC (2003) Performance’s comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Syst 34:183–211

    Google Scholar 

  • Dash et al (2019) Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data. Remote Sens 11:1812. https://doi.org/10.3390/rs11151812

    Article  Google Scholar 

  • Davidson AD, Fusaro AJ, Kashian DR (2015) Using a novel spatial tool to inform invasive species early detection and rapid response efforts. Environ Manag 56:54–65

    Google Scholar 

  • Devillers P, Devillers-Terschuren J, Ledant JP (1991) CORINE Biotopes manual: habitats of the European Community. Publication EUR, vol 12587, no 3

  • Doherty TS, Dickman CR, Nimmo DG, Ritchie EG (2015) Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol Conserv 190:60–68

    Google Scholar 

  • Fontaine M, Cambecedes J, Yk Barascud, Birlinger A, Tribolet L (2014) Plan régional d’actions: Plantes Exotiques Envahissantes en Midi-Pyrénées 2013–2018. DREAL, Toulouse, p 201p

    Google Scholar 

  • Friedberg E (1993) Le Pouvoir et La Règle. Seuil, Paris

    Google Scholar 

  • Gobster PH (2005) Invasive species as ecological threat: is restoration an alternative to fear-based resource management? Ecol Restor 23(4):261–270

    Google Scholar 

  • Große-Stoltenberg A, Hellmann C, Werner C, Oldeland J, Thiele J (2016) Evaluation of continuous VNIR-SWIRSpectra versus narrowband hyperspectral indices to discriminate the invasive acacia longifolia withina mediterranean dune ecosystem. Remote Sens 8:334

    Google Scholar 

  • Guillerme S, Alet B, Briane G, Coulon F, Maire E (2009) L’arbre hors forêt en France. Diversité, usages et perspectives, Revue Forestière Française 5:543–560

    Google Scholar 

  • Guillerme S, Jimenez Olivencia Y, Moreno D (2015) Landscapes of non-woodland Trees; landscapes which reveal the challenges of sustainable development. In: Luginbhül Y, Howard P, Terrasson D (eds) Landscape and sustainable development, the French perspective. Ashgate ed., Dorchester, pp 27–28

    Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada P, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352

    Google Scholar 

  • Huang C, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9:4869–4889

    Google Scholar 

  • Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663–666

    Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85:1–8

    Google Scholar 

  • Keenleyside C, Tucker G, McConville A (2010) Farmland abandonment in the EU: an assessment of trends and prospects. Institute for European Environmental Policy, London

    Google Scholar 

  • Komiyama H, Takeuchi K (2006) Sustainability science: building a new discipline. Sustain Sci 1:1–6

    Google Scholar 

  • Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P et al (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7(1):25–43

    Google Scholar 

  • Lasanta T, Arnáez J, Pascual N, Ruiz-Flaño P, Errea MP, Lana-Renault N (2017) Space–time process and drivers of land abandonment in Europe. CATENA 149:810–823

    Google Scholar 

  • Lefeuvre JC (2004) Plantes envahissantes, attention aux belles étrangères. Espaces naturels 5:11–13

    Google Scholar 

  • Lenda M, Skórka P, Knops JM, Moroń D, Tworek S, Woyciechowski M (2012) Plant establishment and invasions: an increase in a seed disperser combined with land abandonment causes an invasion of the non-native walnut in Europe. Proc R Soc B Biol Sci 279(1733):1491–1497

    Google Scholar 

  • Lévêque C, Tabacchi E, Menozzi MJ (2012) Les espèces exotiques envahissantes, pour une remise en cause des paradigmes écologiques. Sciences Eaux et Territoires 6(1):2–9

    Google Scholar 

  • MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez L, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59(1):47–69

    Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86(1):42–55

    Google Scholar 

  • Maire E, Marais-Sicre C, Guillerme S, Rhoné F, Dejoux JF, Dedieu G (2012) Télédétection de la trame verte arborée en haute résolution par morphologie mathématique comme aide à l’acceptabilité locale des politiques publiques environnementales. Revue Internationale de Géomatique, n° spécial « Méthodes et outils en géomatique pour la cartographie de la Trame Verte et Bleue » 22(4):519–538

  • Marbuah G, Gren IM, McKie B (2014) Economics of Harmful Invasive Species: a Review. Diversity 6:500–523

    Google Scholar 

  • Martin FM, Müllerová J, Borgniet L, Dommanget F, Breton V, Evette A (2018) Using single-and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Remote Sens 10(10):1662. https://doi.org/10.3390/rs10101662

    Article  Google Scholar 

  • McAdam JH, Burgess PJ, Graves AR, Rigueiro-Rodríguez A, Mosquera-Losada MR (2009) Classifications and functions of agroforestry systems in Europe. Agroforestry in Europe. Springer, Dordrecht, pp 21–41

    Google Scholar 

  • McCary MA, Mores R, Farfan MA, Wise DH (2016) Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol Lett 19(3):328–335

    Google Scholar 

  • Michez A, Piégay H, Lisein J, Claessens H, Lejeune P (2016) Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. Int J Appl Earth Observ Geoinf 44:88–94

    Google Scholar 

  • Moser WK, Barnard EL, Billings RF, Crocker SJ, Dix ME, Gray AN et al (2009) Impacts of nonnative invasive species on US forests and recommendations for policy and management. J For 107:320–327

    Google Scholar 

  • Munroe DK, van Berkel DB, Verburg PH, Olson JL (2013) Alternative trajectories of land abandonment: causes, consequences and research challenges. Curr Opin Environ Sustain 5(5):471–476

    Google Scholar 

  • Nerlich K, Graeff-Hönninger S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor Syst 87:475–492

    Google Scholar 

  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci 113(27):7575–7579

    CAS  Google Scholar 

  • Pándi I, Penksza K, Botta-Dukát Z, Kröel-Dulay G (2014) People move but cultivated plants stay: abandoned farmsteads support the persistence and spread of alien plants. Biodivers Conserv 23(5):1289–1302

    Google Scholar 

  • Pepin KM, Wolfson DW, Miller RS, Tabak MA, Snow NP, Ver Cauteren KC, Davis AJ (2019) Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species. Ecosphere 10(3):e02657. https://doi.org/10.1002/ecs2.2657

    Article  Google Scholar 

  • Perrings C, Williamson M, Barbier EB, Delfino D, Dalmazzone S, Shogren J et al (2002) Biological invasion risks and the public good: an economic perspective. Conserv Ecol 6(1)

  • Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98(3):539–548

    Google Scholar 

  • Pysek P (2017) Current trends in plant invasion research. In: Máguas C, Crous C, Costa C (ed) EMAPI 14, international conference on ecology and management of alien plant invasions, Lisboa, p 32

  • Ramos NC, Gastauer M, de Almeida Campos Cordeiro A et al (2015) Environmental filtering of agroforestry systems reduces the risk of biological invasion. Agrofor Syst 89:279–289. https://doi.org/10.1007/s10457-014-9765-7

    Article  Google Scholar 

  • Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, pp 249–253

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17(5):788–809

    Google Scholar 

  • Richardson AJ, Weigand CL (1977) Distinguishing vegetation from soil background information. Photogrammetr Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam JH, Mosquera-Losada MR (2009) Agroforestry systems in Europe: productive, ecological and social perspectives. Agroforestry in Europe. Springer, Dordrecht, pp 43–65

    Google Scholar 

  • Savoie-Zajc L (2009) L’entrevue semi-dirigée. Dans Recherche Sociale : De la Problématique à la Collecte des Données. Montréal: Presses de l’Université du Québec, pp 337–360

  • Shackleton RT, Shackleton CM, Kull CA (2019) The role of invasive alien species in shaping local livelihoods and human well-being: a review. J Environ Manag 229:145–157

    Google Scholar 

  • Simberloff D (2003) Confronting introduced species: a form of xenophobia? Biol Invas 5(3):179–192

    Google Scholar 

  • Simberloff D, Rejmánek M (eds) (2011) Encyclopedia of biological invasions (No. 3). Univ of California Press, California

    Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcıa-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013) Impacts of biological invasions: what’s what and the way forwards. Trends Ecol Evol 28(1):58–66

    Google Scholar 

  • Soudière (de la) M (2019) Arpenter le paysage. Poètes, géographes et montagnards. Anamosa, p 383

  • Tanner RA, Gange AC (2013) The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecol. https://doi.org/10.1007/s11258-013-0179-9

    Article  Google Scholar 

  • Tassin J (2020) Espèces invasives/envahissantes. In: Dictionnaire Critique de l’Anthropocène, Editions du CNRS

  • Tilley C, Cameron-Daum K (2017) Anthropology of landscape. The extraordinary in the ordinary. UCL, London, p 325

    Google Scholar 

  • Trucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Google Scholar 

  • Udawatta PR, Rankoth L, Jose S (2019) Agroforestry and biodiversity. Sustainability 11(10):2879

    Google Scholar 

  • Van der Zanden EH, Verburg PH, Schulp CJ, Verkerk PJ (2017) Trade-offs of European agricultural abandonment. Land Use Policy 62:290–301

    Google Scholar 

  • Vinogradovs I, Nikodemus O, Elferts D, Brūmelis G (2018) Assessment of site-specific drivers of farmland abandonment in mosaic-type landscapes: a case study in Vidzeme, Latvia. Agric Ecosyst Environ 253:113–121

    Google Scholar 

  • Vítková MJ, Müllerová J, Sádlo J, Pergl Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manag 384:287–302

    Google Scholar 

  • Wallace CSA, Walker JJ, Skirvin SM, Patrick-Birdwell C, Weltzin JF, Raichle H (2016) Mapping presence and predicting phenological status of invasive Buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sens 8:524

    Google Scholar 

  • West AM, Evangelista PH, Jarnevich CS, Kumar S, Swallow A, Luizza MW, Chignell SM (2017) Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: an iterative, adaptable approach that employs open-source data and software. Int J Appl Earth Obs Geoinf 59:135–146

    Google Scholar 

Download references

Acknowledgements

This research was funded by CNRS through the projects INVASCAPE (GEODE), EI2P (Région Occitanie) and INVAVISION (PEPS TOHMIS CNRS). We are grateful to the Botanical Conservatory for its help, especially to J. Dao, and we warmly thank the villagers of Oussouet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Guillerme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handled by Tobias Plieninger, Georg-August-Universitat Gottingen, Germany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Semi-directive interview guide utilized (PDF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillerme, S., Barcet, H., de Munnik, N. et al. Evolution of traditional agroforestry landscapes and development of invasive species: lessons from the Pyrenees (France). Sustain Sci 15, 1285–1299 (2020). https://doi.org/10.1007/s11625-020-00847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-020-00847-1

Keywords

Navigation