Skip to main content

Advertisement

Log in

Precipitation and other propagation impairments effects at microwave and millimeter wave bands: a mini survey

  • Research Article - Atmospheric and Space Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The current past has seen a sensational increment in the utilization of satellites for the applications like navigation, entertainment, media transmission, remote sensing, mobile communications, weather forecasting, defense and other purposes. These applications are assigned in the microwave and millimeter wave bands, which offer higher information transfer possibility in lesser time and use very small antennas and devices by ensuring secured and effective communications. However, beyond the 10 GHz range of frequencies these applications are generally subjected to signal losses due to various atmospheric parameters like rain, clouds, fog, hail ice and other applicable phenomena. The main factor for the signal degradation is the rainfall. The attenuation caused by rain increases with frequency, as there is increased absorption of the RF energy at higher frequencies due to water drops present along the path of the transmission; hence, the signal attenuation is more in higher-frequency bands. The other factors that induce losses in the signal are the clouds, gases present in the lower atmosphere and the different layers in the atmosphere that cause scintillation and the system losses and cable losses. This survey article abridges all outcomes related to propagation impairments and attenuation aspects at microwave and millimeter wave frequencies covering the studies of various researchers in last three decades. In addition, few of the models developed by various researchers were listed along with model parameters which are useful for the propagation engineers and others who are interested in this specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sarat Kumar et al. (2008)

Fig. 2

Source: http://theodara.com/maps

Fig. 3

Source: Peel et al. (2007)

Fig. 4

Panagapoulous et al. (2004)

Similar content being viewed by others

References

  • Abdul Rahim SK, Sum CS, Din J, Rahman TA, Aziz ZAA, Awang A (2002) Rain attenuation study over terrestrial and earth satellite links in Malaysia. In: International union of radio science XXVIIth general assembly. Maastricht, Holland, pp 1483–1487

  • Ajayi GO, Feng SR, Reddy BM (1996) Handbook on radio propagation related to satellite in tropical and subtropical countries 58

  • Ajewole MO, Kolawole LB, Ajayi GO (1999) Theoretical study of the effect of different types of tropical rainfall on microwave and millimeter-wave propagation. Radio Sci 34(5):1103–1124

    Google Scholar 

  • Ajose SO, Sadiku NO, Goni U (1995) Computation of attenuation, phase rotation, and cross-polarization of radio waves due to rainfall in tropical regions. IEEE Trans Antennas Propag 43(1):1–5

    Google Scholar 

  • Allnutt JE, Haidara F (1998) Ku-band diurnal rain fade statistics from three, two-year, earth–space experiments in equatorial Africa. In: Proceedings of URSI commission F open symposium climatic parameters in radiowave propagation prediction, pp 27–29

  • Amaya C (2002) Impact of clouds and gases on satcom links at Ka and EHF bands. In: 20th AIAA international communication satellite systems conference and exhibit, American Institute of Aeronautics and Astronautics, Montreal, Quebec, Canada

  • Amaya C, Rogers DV (2002) Characteristics of rain fading on Ka-band satellite-earth links in a Pacific maritime climate. IEEE Trans Microw Theory Tech 50(1):41–45

    Google Scholar 

  • Angeletti P, Lisi M (2012) A systemic approach to the compensation of rain attenuation in Ka-band communication satellites. Int J Microw Sci Technol 2012:1–7

    Google Scholar 

  • Arapoglou P-DM, Panagopoulos AD, Chatzarakis GE, Kanellopoulos JD, Cottis PG (2004) Diversity techniques for satellite communications: an educational graphical tool. IEEE Antenna Propag Mag 46(3):109–114

    Google Scholar 

  • Arbesser-Rastburg BR, Brussaard G (1993) Propagation research in Europe using the OLYMPUS satellite. Proc IEEE 81(6):865–875

    Google Scholar 

  • Arnold H, Cox D, Rustako A (1981) Rain attenuation at 10–30 GHz along earth–space paths: elevation angle, frequency, seasonal, and diurnal effects. IEEE Trans Commun 29(5):716–721

    Google Scholar 

  • Arslan CH, Aydin K, Urbina JV, Dyrud L (2018) Satellite-link attenuation measurement technique for estimating rainfall accumulation. IEEE Trans Geosci Remote Sens 56(2):681–693

    Google Scholar 

  • Awang MA, Din J (2004) Comparison of the rain drop size distribution model in tropical region. In: RF and microwave conference, 2004. RFM 2004. Proceedings, IEEE, pp 20–22

  • Baquero M, Cruz-Pol S, Bringi VN, Chandrasekar V (2005) Rain-rate estimate algorithm evaluation and rainfall characterization in tropical environments using 2DVD, rain gauges and TRMM data. In: International geoscience and remote sensing symposium, vol 2, p 1146

  • Barbara AK, Devi M, Timothy KI, Sharma S (1993) Microwave propagation in relation to atmospheric parameters over different terrains of Assam Valley. In: Geoscience and remote sensing symposium, 1993. IGARSS’93. Better understanding of earth environment., International, IEEE, pp 261–263

  • Begum S, Otung IE (2008) Characterization of rain attenuation in Bangladesh and application to satellite link design. Radio Science 43(01):1–16

    Google Scholar 

  • Brooker RL (2004) U.S. Patent No. 6,813,476. U.S. Patent and Trademark Office, Washington, DC

  • Brussaard G, Rogers DV (1990) Propagation considerations in satellite communication systems. Proc IEEE 78(7):1275–1282

    Google Scholar 

  • Bryant GH, Adimula I, Riva C, Brussaard G (2001) Rain attenuation statistics from rain cell diameters and heights. Int J Satell Commun 19(3):263–283

    Google Scholar 

  • Capsoni C, Fedi F, Paraboni A (1987a) A comprehensive meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHz. Radio Sci 22(3):387–393

    Google Scholar 

  • Capsoni C, Fedi F, Magistroni C, Paraboni A, Pawlina A (1987b) Data and theory for a new model of the horizontal structure of rain cells for propagation applications. Radio Sci 22(03):395–404

    Google Scholar 

  • Catalán C, Vilar E (2002) Simultaneous analysis of downlink beacon dynamics and sky brightness temperature. Part II: extraction of amplitude scintillations. IEEE Trans Antennas Propag 50(4):535–545

    Google Scholar 

  • Cerqueira JL, Assis MS (2013) Rainfall rate duration study for performance assessment of satellite communication links. Int J Microw Sci Technol 2013:1

    Google Scholar 

  • Chaisang A, Hemmakorn N (2000) Satellite due to rain fading at Klong downlink availability of Thaicom 3 Yai ground station. In: TENCON 2000. Proceedings, vol 1, IEEE, pp 106–108

  • Chandrasekar V, Fukatsu H, Mubarak K (2003) Global mapping of attenuation at Ku-and Ka-band. IEEE Trans Geosci Remote Sens 41(10):2166–2176

    Google Scholar 

  • Charles EM, Jaeger BE (2002) Rain attenuation model comparison and validation. Online J Space Commun (2):1-29. http://www.spacejournal.org/

  • Chu CY, Chen KS (2005) Effects of rain fading on the efficiency of the Ka-band LMDS system in the Taiwan area. IEEE Trans Veh Technol 54(1):9–19

    Google Scholar 

  • Costa E (1983) An analytical and numerical comparison between two rain attenuation prediction methods for earth–satellite paths. In: ESA wave propagation and remote sensing, (SEE N83-29494 18-32), pp 213–218

  • Crane RK (1985) Evaluation of global and CCIR models for estimation of rain rate statistics. Radio Sci 20(4):865–879

    Google Scholar 

  • Crane RK (2002) Analysis of the effects of water on the ACTS propagation terminal antenna. IEEE Trans Antennas Propag 50(7):954–965

    Google Scholar 

  • Crane RK, Blood DW (1979) Handbook for the estimation of microwave propagation effects—link calculations for Earth-Space Paths. Environmental Research and Technology Rpt. No. 1, DoC. No. P-7376-TRL

  • Czarnecki M (2000) Compensation of rain attenuation for ka-band satellite systems. In: 13th international conference on microwaves, radar and wireless communications. MIKON-2000, vol 2. IEEE, pp 439–442

  • D’Amico MM, Holt AR, Capsoni C (1998) An anisotropic model of the melting layer. Radio Sci 33(3):535–552

    Google Scholar 

  • Damodar M (2005) Applications of propagation models to design geostationary satellite links operating in Ka-band over indian rain zones. In: Proceedings of the 28th URSI general assembly, India

  • da Silva Mello LAR, Costa E, de Souza RSL (2002) Rain attenuation measurements at 15 and 18 GHz. Electron Lett 38(4):197–198

    Google Scholar 

  • Das D, Maitra A (2015) Rain attenuation prediction during rain events in different climatic regions. J Atmos Solar Terr Phys 128:1–7

    Google Scholar 

  • Davies PG, Mackenzie EC (1981) Review of SHF and EHF slant path propagation measurements made near Slough (UK). In: IEE Proceedings H (microwaves, optics and antennas), vol 128, no. 1. IET Digital Library, pp 53–65

  • del Pino PG, Riera JM, Benarroch A (2005) Slant path attenuation measurements at 50 GHz in Spain. IEEE Antennas Wirel Propag Lett 4(1):162–164

    Google Scholar 

  • Devika SV, Kotamraju SK, Kavya KCS, Kumar VS, Suhas K, Vinu K, Anudeep B (2016) A circularly polarized Ka-band antenna for continuous link reception from GSAT-14. Indian J Sci Technol 9(38)

  • Devika S, Karki K, Kotamraju SK, Kavya K, Rahman MZ (2017) A new computation method for pointing accuracy of Cassegrain antenna in satellite communication. J Theor Appl Inf Technol 95(13)

  • Dissanayake A (2002) Ka-band propagation modeling for fixed satellite applications. Online J Space Commun 2:1–5

    Google Scholar 

  • Dissanayake A, Allnut J, Haidara F (1997) A prediction model that combines rain attenuation and other propagation impairments along Earth Satellite Paths. IEEE Trans Antennas Propag 45(10):1546–1558

    Google Scholar 

  • Dissanayake A, Allnut J, Haidara F (2001) Cloud attenuation modeling for SHF and EHF applications. Int J Satell Commun 19(3):335–345

    Google Scholar 

  • Dutton EJ, Dougherty HT, Martin RF Jr (1974) Prediction of European rainfall and link performance coefficients at 8 to 30 GHZ. Institute for Telecommunication Sciences, Boulder

    Google Scholar 

  • Ekpenyong BE, Srivastava RC (1970) Radar characteristics of the melting layer: a theoretical study. University of Chicago, Department of the Geophysical Sciences, Chicago

    Google Scholar 

  • Emiliani LD, Agudelo J, Gutierrez E, Restrepo J, Fradique-Mendez C (2004) Development of rain-attenuation and rain-rate maps for satellite system design in the Ku and Ka bands in Colombia. IEEE Antennas Propag Mag 46(6):54–68

    Google Scholar 

  • Erwin K, Fontan FP, Angeles Vazquez Castro M, Buonomo S, Arbesser-Rastburg BR, Baptista JPVP (2000) Ka-band propagation measurements and statistics for land mobile satellite applications. IEEE Trans Veh Technol 49(3):973–984

    Google Scholar 

  • Fashuyi MO, Afullo TJ (2007) Rain attenuation prediction and modeling for line-of-sight links on terrestrial paths in South Africa. Radio Sci 42(5):1–15

    Google Scholar 

  • Fedi F (1985) Special issue on the COST 205 project on earth–satellite radio propagation above 10 GH2. Association of Elettrotec. ed Electron. Italiana

  • Feldhake GS, Ailes-Sengers L (2002) Comparison of multiple rain attenuation models with three years of Ka band propagation data concurrently taken at eight different locations. Online J Space Commun. http://www.spacejournal.org/

  • Felix LEM, Pontes MS, Dhein NR, Migliora CG (2006) Unavailability due to rain of VSAT networks operating in Ka and Ku bands in Brazil. Int J Satell Commun Netw 24(3):203–213

    Google Scholar 

  • Fiebig U-C (2004) A time series generator modeling rain fading. Institute of communication and navigation, German Aerospace Center, DLR Report—2004

  • Flavin RK (1996) Satellite link rain attenuation in Brisbane and a proposed new model for Australia. In: Telstra Research Laboratories, Report, (8375)

  • Goldhirsh J, Dockery D (2004) Propagation characteristics for coastal region of South Korea and their impact on communication systems. In: Military communications conference, 2004. MILCOM 2004. 2004 IEEE, vol 1. IEEE, pp 460–465

  • Grémont BC, Filip M (2004) Spatio-temporal rain attenuation model for application to fade mitigation techniques. IEEE Trans Antennas Propag 52(5):1245–1256

    Google Scholar 

  • Halder T, Adhikari A, Maitra A (2018) Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations. J Atmos Solar Terr Phys 170:11–20

    Google Scholar 

  • Hansson L (1990) New concept used to predict slant path rain attenuation statistics. In: IEE proceedings H (microwaves, antennas and propagation), vol. 137, no. 2. IET Digital Library, pp 89–93

  • Hasanuddin ZB, Fujisaki K, Ishida K, Tateiba M (2002a) Measurement of Ku-band rain attenuation using several VSATs in Kyushu Island, Japan. IEEE Antennas Wirel Propag Lett 1(1):116–119

    Google Scholar 

  • Hasanuddin ZB, Fujisaki K, Ishida K, Tateiba M (2002b) Measurement of Ku-band rain attenuation using several VSATs in Kyushu Island, Japan. IEEE Antennas Wirel Propag Lett 1(1):116–119

    Google Scholar 

  • Hatsuda T, Aoki Y, Echigo H, Takahata F, Maekawa Y, Fujisaki K (2004) Ku-band long distance site-diversity (SD) characteristics using new measuring system. IEEE Trans Antennas Propag 52(6):1481–1491

    Google Scholar 

  • Helmken H, Henning RE, Feil J, Ippolito LJ, Mayer CE (1997) A three-site comparison of fade-duration measurements. Proc IEEE 85(6):917–925

    Google Scholar 

  • Hardaker PJ (1992) A study of the melting layer in single polarisation radar echoes with application to operational weather radar (Doctoral dissertation, University of Essex)

  • Hendrantoro G, Zawadzki I (2003) Derivation of parameters of YZ power-law relation from raindrop size distribution measurements and its application in the calculation of rain attenuation from radar reflectivity factor measurements. IEEE Trans Antennas Propag 51(1):12–22

    Google Scholar 

  • Hogg DC, Chu TS (1975) The role of rain in satellite communications. Proc IEEE 63(9):1308–1331

    Google Scholar 

  • Hugues V (1999) Prediction of tropospheric scintillation on satellite links from radiosonde data. IEEE Trans Antennas Propag 47(2):293–302

    Google Scholar 

  • Immadi G, Kotamraju SK, Khan H, Venkata Narayana M, Jaya Krishna Pooja M (2014a) Implementation of data logging as a part of propagation impairment studies of Ku band satellite signal with the establishment of low cost experimental setup. Int J Appl Eng Res 9(3):355–367

    Google Scholar 

  • Immadi G, Kotamraju SK, Khan H, Venkata Narayana M, Hemavasavi K, Pooja Naga Sai K, Sirisha N (2014b) Estimation of Ku band satellite signal propagation impairment due to rain in tropical environment using ITU-R. Int J Appl Eng Res 9(20):7149–7168

    Google Scholar 

  • Immadi G, Kotamraju SK, Khan H, Venkata Narayana M (2014c) Rain rate-radar reflectivity relationship for drop size distribution and rain attenuation calculation of Ku band signals. Int J Eng Technol 6(2):815–824

    Google Scholar 

  • Immadi G, Kotamraju SK, Venkata Narayana M, Khan H, Sreemadhuri A, Sravya Chowdary K, Vineela P (2015a) Measurement of tropospheric scintillation using Ku band satellite beacon data in tropical region. J Eng Appl Sci 10(4):1568–1575

    Google Scholar 

  • Immadi G, Kotamraju SK, Venkata Narayana M, Rajkamal K, Habibulla K, Viswanath G, Avinash I (2015b) Measurement of rain attenuation for Ku band satellite signal in tropical environment using DAH, SAM models. RPN J Eng Appl Sci 10(4):1717–1725

    Google Scholar 

  • Immadi G, Narayana MV, Kotamraju SK, Kavya K, Maneesha S, Ravali K, Sravani C (2017a) Computation of effects of troposphere on Ku band down link signal in tropical regions. J Theor Appl Inf Technol 95(9):2078–2087

    Google Scholar 

  • Immadi G, Narayana MV, Kotamraju SK, Sarvani T, Manasa T, Yaswant CV, Kalyan JA (2017b) Computation of attenuation due to rain for Ku band frequencies using DSD for the tropical region. J Theor Appl Inf Technol 95(10)

  • Islam MR, Chebil J, Tharek AR (1999) Frequency scaling of rain attenuation from 23-to 38-GHz microwave signals measured in malaysia. In: Microwave conference, 1999 Asia Pacific, vol 3. IEEE, pp 793–796

  • ITU-R.P.618-3-5-7-8-9 (1994-1997-2002-2004-2007) Propagation data and prediction methods required for the design of earth–space telecommunication systems. Recommendations International Telecommunications Union

  • ITU-R.P.676-4-7 (1999-2007)Attenuation by atmospheric gases in the frequency range 1–350 GHz. Recommendations International Telecommunications Union

  • ITU-R.P.840-3 (1999) Attenuation due to clouds and fog. Recommendations International Telecommunications Union

  • John Philip B, Kotamraju SK, Sri Kavya KC, Madhumitha R, Pavan Kumar A (2017) Performance evaluation of attenuation time series generators over Indian region. J Adv Res Dyn Control Syst 2017(Special Issue 2):48–55

    Google Scholar 

  • Kalyan SSS, Kavya KCS, Kotamraju SK (2017) A reconfigurable beam steering linear phased array antenna for Ku band satellite communication using graphing method. J Adv Res Dyn Control Syst 2012:63–71

    Google Scholar 

  • Kanellopoulos JD, Clarke RH (1981) A study of the joint statistics of rain depolarization and attenuation applied to the prediction of radio link performance. Radio Sci 16(2):203–211

    Google Scholar 

  • Karasawa Y, Matsudo T (1991) Characteristics of fading on low-elevation angle earth–space paths with concurrent rain attenuation and scintillation. IEEE Trans Antennas Propag 39(5):657–661

    Google Scholar 

  • Karasawa Y, Yamada M, Allnutt JE (1988) A new prediction method for tropospheric scintillation on earth–space paths. IEEE Trans Antennas Propag 36(11):1608–1614

    Google Scholar 

  • Kassianides CN, Otung IE (2003) Dynamic model of tropospheric scintillation on earth-space paths. IEE Proc Microw Antennas Propag 150(2):97–104

    Google Scholar 

  • Karhu S, Salonen E, Hyvonen R, Uppala S, Baptista JP (1993) Prediction of rain attenuation at low-availabilities using models and data of widespread and convective rains. In: Eighth international conference on antennas and propagation, vol 1993. IET, pp 56–59

  • Kestwal MC, Joshi S, Garia LS (2014) Prediction of rain attenuation and impact of rain in wave propagation at microwave frequency for tropical region (Uttarakhand, India). Int J Microw Sci Technol 2014:1

    Google Scholar 

  • Khajepuri F, Ghorbani A, Amindavar H (2004) A new method for estimating rain attenuation at high frequencies. In: Proceedings of the 3rd International conference on computational electromagnetics and its applications, 07803-8562-4/2004. IEEE, pp 76–79

  • Khan SA, Tawfik AN, Gibbins CJ, Gremont BC (2003) Extra-high frequency line-of-sight propagation for future urban communications. IEEE Trans Antennas Propag 51(11):3109–3121

    Google Scholar 

  • Kilaru A, Kotamraju SK, Avlonitis N, Kavya KCS (2016) Rain rate intensity model for communication link design across the Indian region. J Atmos Solar Terr Phys 145:136–142

    Google Scholar 

  • Kim JC, Schall DE (1999) On the improvement of low elevation angle satellite communications impaired by tropospheric fading effects. In: Military communications conference proceedings, 1999. MILCOM 1999. IEEE, vol 1. IEEE, pp 603–607

  • Kishore KV, Rajesh GS, Kumar V, Srinivasulu P, Kavya KCS, Kotamraju SK (2015) Design and simulation of 8-way unequal amplitude equal phase RF feeder network using conventional microstrip technology for 430 MHz tropospheric wind profiling radar. In: 2015 International conference on signal processing and communication engineering systems (SPACES). IEEE, pp 226–230

  • Kubista E, Fontan FP, Castro MV, Buonomo S, Arbesser-Rastburg BR, Baptista JPVP (2000) Ka-band propagation measurements and statistics for land mobile satellite applications. IEEE Trans Veh Technol 49(3):973–983

    Google Scholar 

  • Kumar A, Hudiara IS, Jassal BS, Singh J (2004) Measurement of rain-induced zenith-path attenuation using 19.9 GHz radiometer at Amritsar (India). IEEE Trans Antennas Propag 52(3):702–708

    Google Scholar 

  • Lee JH, Kim YS, Kim JH, Choi YS, Pack JK (2001) Influence of rain attenuation models on the link availability of Ka-band non-GSO FSS system. In: Antennas and propagation society international symposium, 2001. IEEE, vol 3. IEEE, pp 104–108

  • Lee JH, Choi YS, Lee HS, Pack JK (2003). Real-time estimation of rain attenuation on the satellite link. In: Vehicular technology conference, 2003. VTC 2003-Spring. The 57th IEEE semiannual, vol 4. IEEE, pp 2291–2294

  • Lekkla R, Prapinmongkolkarn P (1998) Diurnal variations in rain attenuation on Ku band earth–space paths. Int J Satell Commun 16(5):219–236

    Google Scholar 

  • Lekkla R, McCormick KS, Rogers DV (1998) 12-GHz fade duration statistics on earth–space paths in South–East Asia. In: Proceedings of URSI commission F open symposium on climatic parameters in radiowave propagation prediction (CLIMPARA 98), Ottawa, Ontario, Canada, pp 167–170

  • Lin DP, Chen HY (2002) An empirical formula for the prediction of rain attenuation in frequency range 0.6–100 GHz. IEEE Trans Antennas Propag 50(4):545–552

    Google Scholar 

  • Liou YA (2000) Radiometric observation of atmospheric influence on space-to-earth Ka-band propagation in Taiwan. In: Proceedings of national science council, Republic of China. Part A, physical science and engineering, vol 24, no. 3, pp 238–247

  • Locatelli JD, Hobbs PV (1974) Fall speeds and masses of solid precipitation particles. J Geophys Res 79(15):2185–2197

    Google Scholar 

  • Madhuri AS, Immadi G, Narayana MV (2018) Estimation of cumulative distribution of scintillation effect on Ku band frequencies for one of the tropical regions using various models. J Eng Sci Technol Rev 11(1):151–155

    Google Scholar 

  • Maekawa Y, Fujiwara T, Shibagaki Y, Sato T, Yamamoto M, Hashiguchi H, Fukao S (2004) First year results on rain attenuation characteristics of satellite links at equatorial atmospheric radar. In: Antennas and propagation society international symposium, 2004. IEEE, vol 2, IEEE, pp 1660–1663

  • Maitra A (2004) Rain attenuation modeling from measurements of rain drop size distribution in the Indian region. IEEE Antennas Wirel Propag Lett 3(1):180–181

    Google Scholar 

  • Maitra A, Chakravarty K (2005) Ku-band rain attenuation observations on an earth–space path in the Indian region. In: 28th URSI-GA, pp 23–29

  • Maitra A, Adhikari A, Bhattacharya A (2012) Some characteristics of earth–space path propagation phenomena at a tropical location. 92.60. jf; 92.60. Kc

  • Manabe T, Yoshida T (1995) Rain attenuation characteristics on radio links. In: 1995 URSI international symposium on signals, systems, and electronics, 1995. ISSSE’95, proceedings. IEEE, pp 77–80

  • Mandeep J, Islam M (2012) Evaluation of statistical tropospheric scintillation models using SUPERBIRD-C satellite for Malaysia. Acta Geophys 60(4):1180–1191

    Google Scholar 

  • Mandeep SJS, Hassan SIS, Tanaka K, Ain F, Igarashi F, Iida M (2007) Measurement of tropospheric scintillation from satellite beacon at Ku-band In South East Asia. IJCSNS Int J Comput Sci Netw Secur 7(2):251–256

    Google Scholar 

  • Mandeep JS, Hassan SIS, Tanaka K (2008) Rainfall effects on Ku-band satellite link design in rainy tropical climate. J Geophys Res: Atmos 113(D5)

  • Manning RM (1984) A rain attenuation model for satellite link attenuation predictions incorporating the spatial inhomogeneity of rainrate. Int J Satell Commun 2(3):187–197

    Google Scholar 

  • Martellucci A (2002) Radiowave propagation modelling for SatCom services at Ku-band and above. COST action 255 final report

  • Martellucci A, Luini L, Testoni A, Paraboni A, Riva C (2000) Assessment of the spatial correlation of water vapour, liquid water and rain amounts in Europe. North America and Japan using ECMWF, Re-analysis data, ESA report

  • Matricciani E (1991) Rain attenuation predicted with a two-layer rain model. Eur Trans Telecommun 2(6):715–727

    Google Scholar 

  • Matricciani E (2008) Global formulation of the synthetic storm technique to calculate rain attenuation only from rain rate probability distributions. In: Antennas and propagation society international symposium, 2008. AP-S 2008. IEEE. IEEE, pp 1–4

  • Matricciani E, Mauri M (1995) Italsat-Olympus 20-GHz orbital diversity experiment at Spino d’Adda. IEEE Trans Antennas Propag 43(1):105–108

    Google Scholar 

  • Matricciani E, Riva C, Castanet L (2006) Performance of the synthetic storm technique in a low elevation 5 slant path at 44.5 GHz in the French Pyrénées. In: First European conference on antennas and propagation, 2006. EuCAP 2006. IEEE, pp 1–6

  • Mauri M, Paraboni A, Tarducci D (1986) Depolarization measurements at 11.6 GHz on earth–space paths using the SIRIO satellite. IEEE Trans Antennas Propag 34(4):582–585

    Google Scholar 

  • McCarthy DK, Allnutt JE, Salazar WE, Wanmi F (1994) Results of 11.6 GHz radiometric experiment in Cameroon: second year. Electron Lett IEE 30(17):1449–1450

    Google Scholar 

  • Mello L, Pontes MS (2012) Unified method for the prediction of rain attenuation in satellite and terrestrial links. J Microw Optoelectron Electromagn Appl 11(1):1–14

    Google Scholar 

  • Michelson DG, Liu W (2009) Simulation of rain fading and scintillation on Ka-band earth–LEO satellite links. In: Canadian conference on electrical and computer engineering, 2009. CCECE’09, IEEE, pp 635–640

  • Misme P, Waldteufel P (1980) A model for attenuation by precipitation on a microwave earth–space link. Radio Sci 15(3):655–665

    Google Scholar 

  • Mitra SK, Vohl O, Ahr M, Pruppacher HR (1990) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: experiment and theory for snow flakes. J Atmos Sci 47(5):584–591

    Google Scholar 

  • Mohamad H, Hamaguchi K, Teh CH, Lee SW, Arif NAM, Wee CY (2006) Joint study of rain attenuation effect for fixed wireless access system. Project report NICT-MMU, Japan

  • Mondal NC, Sarkar SK (2003) Rain height in relation to 0 °C isotherm height for satellite communication over the Indian Subcontinent. Theoret Appl Climatol 76(1–2):89–104

    Google Scholar 

  • Mondal NC, Timothy KI, Battacharaya AB, Sakar SK (1997) Technical note The effect of rate of decay of rain path profile on microwave communication. Int J Remote Sens 18:3669–3675

    Google Scholar 

  • Mondal NC, Sarkar SK, Bhattacharya AB, Mali P (2001) Rain height in relation to 0 °C isotherm height over some Indian tropical locations and rain attenuation for an Indian south coastal station for microwave and millimeter wave communication systems. Int J Infrared Millimeter Waves 22(3):495–504

    Google Scholar 

  • Moupfouma F (1984) Improvement of a rain attenuation prediction method for terrestrial microwave links. IEEE Trans Antennas Propag 32(12):1368–1372

    Google Scholar 

  • Moupfouma F (1993) Point rainfall rate cumulative distribution function valid at various locations. Electron Lett 29(17):1503–1505

    Google Scholar 

  • Nackoney OG, Davidson D (1982) Results of 11.7-GHz CTS rain attenuation measurements at Waltham, Massachusetts. Radio Sci 17(06):1435–1442

    Google Scholar 

  • Naicker K, Mneney SH (2006) Propagation measurements and multipath channel modelling for line-of-sight links at 19.5 GHz. Res J 97:162–171

    Google Scholar 

  • Nelson B, Stutzman WL (1996) Fade slope on 10 to 30 GHz earth–space communication links—measurements and modelling. IEE Proc Microw Antennas Propag 143(4):353–357

    Google Scholar 

  • Oguchi T (1983) Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc IEEE 71(9):1029–1078

    Google Scholar 

  • Ojo JS, Omotosho TV (2013) Comparison of 1-min rain rate derived from TRMM satellite data and raingauge data for microwave applications in Nigeria. J Atmos Solar Terr Phy 102:17–25

    Google Scholar 

  • Ojo JS, Owolawi PA (2015) Application of synthetic storm technique for diurnal and seasonal variation of slant path Ka-band rain attenuation time series over a subtropical location in South Africa. Int J Antennas Propag

  • Ojo JS, Ajewole MO, Sarkar SK (2008) Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeria. Prog Electromagn Res 5:207–223

    Google Scholar 

  • Ojo JS, Ajewole MO, Emiliani LD (2009) One-minute rain-rate contour maps for microwave-communication-system planning in a tropical country: Nigeria. IEEE Antennas Propag Mag 51(5):82–89

    Google Scholar 

  • Ong JT, Timothy KI, Chong JH, Rao SVB (2003) Heavy rain effects on the propagation of free space optical links in Singapore

  • Pan QW, Allnutt JE (2004) 12-GHz fade durations and intervals in the tropics. IEEE Trans Antennas Propag 52(3):693–701

    Google Scholar 

  • Pan QW, Allnutt JE, Haidara F (2000) Seasonal and diurnal rain effects on Ku-band satellite link designs in rainy tropical regions. Electron Lett 36(9):1

    Google Scholar 

  • Panagopoulos AD, Kanellopoulos JD (2003) On the rain attenuation dynamics: spatial-temporal analysis of rainfall rate and fade duration statistics. Int J Satell Commun Netw 21(6):595–611

    Google Scholar 

  • Panagopoulos AD, Arapoglou PDM, Cottis PG (2004) Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun Surv Tutorial 6(3):2–14

    Google Scholar 

  • Panchal P, Joshi R (2016) Performance analysis and simulation of rain attenuation models at 12–40 GHz band for an earth space path over Indian cities. Proc Comput Sci 79:801–808

    Google Scholar 

  • Paraboni A, Capsoni C, Zaccarini F (1995) The horizontal structure of rain and its impact on the design of advanced satellite systems at centimetre and millimetre wavelengths. In: Microwave and optoelectronics conference, 1995. Proceedings., 1995 SBMO/IEEE MTT-S international, vol 2. IEEE, pp 519–525

  • Park YH, Lee JH, Jambaljav N, Pack JK (2002) Empirical study on the rain drop-size model for rain attenuation calculations. In:  Proceedings of the URSI general assembly, vol 4, pp 01213. http://www.ursi.org/Proceedings/ProcGA05/pdf/F01P

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

  • Polaries Baptista JPV, Kubista E, Witternig N, Randeu WL (1989) Worst-month statistics for high outage probabilities. In: Antennas and propagation, 1989. ICAP 89., sixth international conference on (Conf. publ. no. 301), IET, pp 10–13

  • Polaries Bapista JPV, Kubista E, Wittering N, Randeu WL (1990) Worst-month statistics for high outage probabilities. ESA/ESTEC, INW/TU Graz, The Netherlands, Austria

    Google Scholar 

  • Polonio R, Riva C (1998) ITALSAT propagation experiment at 18.7, 39.6, and 49.5 GHz at Spino D'Adda: three years of CPA statistics. IEEE Trans Antennas Propag AP 46(5):631–635

    Google Scholar 

  • Pontes MS, Mello LS, Migliora CGS (1990) Ku-band slant-path radiometric measurements at three locations in Brazil. Int J Satell Commun 8(3):239–249

    Google Scholar 

  • Pontes MS, da Silva Mello L, de Souza RSL, Miranda ECB (2005) Review of rain attenuation studies in tropical and equatorial regions in Brazil. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1097–1101

  • Rachan L, Prasit P (1998) Diurnal variations in rain attenuation on Ku band earth–space paths. Int J Satel Commun 16:219–236

    Google Scholar 

  • Rahim RA, Leong LC, Chan KS, Pang JF (2005) Data acquisition process in optical tomography: signal sample and hold circuit. In: 1st international conference on computers, communications, & signal processing with special track on biomedical engineering, 2005. CCSP 2005. IEEE, pp 189–192

  • Raina MK (1996) Atmospheric emission measurements of attenuation by microwave radiometer at 19.4 GHz. IEEE Trans Antennas Propag 44(2):188–191

    Google Scholar 

  • Raina M, Uppal G (1981) Rain attenuation measurements over New Delhi with a microwave radiometer at 11 GHz. IEEE Trans Antennas Propag 29(6):857–864

    Google Scholar 

  • Raina M, Uppal G (1984) Frequency dependence of rain attenuation measurements at microwave frequencies. IEEE Trans Antennas Propag 32(2):185–187

    Google Scholar 

  • Rakshit G, Adhikari A, Maitra A (2017) Modelling of rain decay parameter for attenuation estimation at a tropical location. Adv Space Res 59(12):2901–2908

    Google Scholar 

  • Ramachandran V, Kumar V (2004) Rain attenuation measurement on Ku-band satellite TV downlink in small island countries. Electron Lett 40(1):49–50

    Google Scholar 

  • Ramachandran V, Kumar V (2007) Modified rain attenuation model for tropical regions for Ku-Band signals. Int J Satell Commun Netw 25(1):53–67

    Google Scholar 

  • Rao TN, Rao DN, Mohan K, Raghavan S (2001) Classification of tropical precipitating systems and associated Z–R relationships. J Geophys Res: Atmos 106(D16):17699–17711

    Google Scholar 

  • Raynaud L, Chenerie I, Lemorton J (1999) Improved modelling of propagation and backscattering of millimetre waves in the melting layer

  • Recommendation CCIR (1992) Method for the subjective assessment of the quality of television pictures. CCIR Broadcasting Service (Television), pp 166–189

  • Reddy GV (2005) Atmospheric constraints in HF UHF satellite communication in the Indian Sub Continent

  • Rice P, Holmberg N (1973) Cumulative time statistics of surface-point rainfall rates. IEEE Trans Commun 21(10):1131–1136

    Google Scholar 

  • Rodda MJ, Williamson AG (1997) Results of a two year radiometric measurement programme in New Zealand. Electron Lett 33(4):326–328

    Google Scholar 

  • Rogister A, Mertens D, Vanhoenacker-Janvier D, Martellucci A, Arbesser-Rastburg B (2003) RAPIDS: radio propagation integrated database system. In: Meeting and joint workshop with COST272, ESTEC, The Netherlands

  • Russchenberg HWJ, Ligthart LP (1996) Backscattering by and propagation through the melting layer of precipitation: a new polarimetric model. IEEE Trans Geosci Remote Sens 34(1):3–14

    Google Scholar 

  • Salonen ET, Baptista JP (1997) A new global rainfall rate model. In: Tenth international conference on antennas and propagation, (conf. publ. no. 436), vol 2. IET, pp 182–185

  • Salonen E, Uppala S (1991) New prediction method of cloud attenuation. Electron Lett 27(12):1106–1108

    Google Scholar 

  • Sánchez-Lago I, Fontán FP, Mariño P, Fiebig UC (2007) Validation of the synthetic storm technique as part of a time-series generator for satellite links. IEEE Antennas Wirel Propag Lett 6:372–375

    Google Scholar 

  • Sarat Kumar K, Vijaya Bhaskara Rao S, Narayana Rao D (2008) Prediction of Ku band rain attenuation using experimental data and simulations for Hassan, India. Int J Comput Sci Netw Secur IJCSNS, 8(4):P10–P15. ISSN: 1738:7906

  • Sarkar SK, Prasad MVSN, Dutta HN, Reddy BM, Rao DN (1989) Rain and extent of cells over the Indian subcontinent. In: Sixth international conference on antennas and propagation, ICAP 89 (Conf Publ No 301), vol 2, pp 318–321

  • Sarkar SK, Prasad MVSN, Dutta HN, Reddy BM (1995) Rain attenuation for satellite paths over two tropical stations. In: Ninth international conference on antennas and propagation, 1995., (conf. publ. no. 407), vol 2. IET, pp 94–98

  • Semire FA, Mohd-Mokhtar R, Ismail W, Mohamad N, Mandeep JS (2015) Modeling of rain attenuation and site diversity predictions for tropical regions. Annales Geophysicae (09927689) 33(3):321–331

    Google Scholar 

  • Shrestha S, Choi DY (2017) Characterization of rain specific attenuation and frequency scaling method for satellite communication in South Korea. Int J Antennas Propag 2017

  • Singliar R, Bitó J, Din J, Tharek AR (2006) Comparison of predicted attenuation of satellite rain attenuation distribution in Malaysia and Hungary. In: Proceedings of the 16th international Czech–Slovakia scientific conference radioelektronika, pp 246–249

  • Stewart RE, Marwitz JD, Pace JC, Carbone RE (1984) Characteristics through the melting layer of stratiform clouds. J Atmos Sci 41(22):3227–3237

    Google Scholar 

  • Stutzman WL (1993) Prolog to the special section on propagation effects on satellite communication links. Proc IEEE 81:850–855

    Google Scholar 

  • Stutzman WL, Dishman WK (1982) A simple model for the estimation of rain-induced attenuation along earth–space paths at millimeter wavelengths. Radio Sci 17(6):1465–1476

    Google Scholar 

  • Sum CS, Din J, Tharek AR, Abidi MZ (2003) Studies on characteristics of rain fade at 23 GHz for terresterial links. In: Asia-Pacific conference on applied electromagnetics (APACE 2003), 7803-8129-7/03/2003. IEEE, Shah Alam, Malaysia, pp 76–79

  • Suryana J, Utoro S, Tanaka K, Igarashi K, Jida M (2005a) Study of prediction models compared with the measurement results of rainfall rate and Ku-band rain attenuation at Indonesian tropical cities. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1580–1584

  • Suryana J, Utoro S, Tanaka K, Igarashi K, Jida M (2005b) Two years characterization of concurrent Ku-band rain attenuation and tropospheric scintillation in Bandung, Indonesia using JCSAT3. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1585–1589

  • Svjatogor L (1985) Telecommunication working group. Dresden, GDR, Report

    Google Scholar 

  • Thurai M, Deguchi E, Okamoto K, Salonen E (2005) Rain height variability in the tropics. IEE Proc Microw Antennas Propag 152(1):17–23

    Google Scholar 

  • Timothy KI, Ong JT, Choo EBL (2000) Descriptive fade slope statistics on INTELSAT Ku-band communication link. Electron Lett 36(16):1422–1424

    Google Scholar 

  • Timothy KI, Ong JT, Choo EB (2002) Raindrop size distribution using method of moments for terrestrial and satellite communication applications in Singapore. IEEE Trans Antennas Propag 50(10):1420–1424

    Google Scholar 

  • van de Kamp MMJL (2002a) Rain attenuation as a Markov process: how to make an event. In: 2nd international workshop of COST action, vol 280, pp 26–28

  • van de Kamp MMJL, Castanet L (2002b) Propagation modeling and fade mitigation for Ka-band satellite system. In: 1st international workshop COST-280, PM3018

  • Ventouras S, Wrench CL (1999) Diurnal variations of 20 GHz and 40 GHz slant path attenuation statistics in southern England

  • Verma AK, Jha KK (1996) Rain drop size distribution model for Indian climate. J Radio Space Phys 25:15–21

    Google Scholar 

  • Vogel WJ (1982) Measurements of satellite beacon attenuation at 11.7, 19.04, and 28.56 GHz and radiometric site diversity at 13.6 GHz. Radio Sci 17(6):1511–1520

    Google Scholar 

  • Walther Å, Terje T (2003) A novel method for predicting site dependent specific rain attenuation of millimeter radio waves. IEEE Trans Antennas Propag 51:2987–3000

    Google Scholar 

  • Watson PA, Hu YF (1994) Prediction of attenuation on satellite-earth links for systems operating with low fade margins. IEE Proc Microw Antennas Propag 141(6):467–473

    Google Scholar 

  • Watson PA, Leitao MJ, Turney O, Sengupta N (1985) Development of a climatic map of rainfall attenuation for Europe. Postgraduate School of Electrical & Electronic Engineering, University of Bradford, Report No. 372 (Final report for ESA/ESTEC contract No. 5192/82/NL/GM)

  • Wilson PS, Toumi R (2005) A fundamental probability distribution for heavy rainfall. Geophys Res Lett 32(14):L14812

    Google Scholar 

  • Yamada M, Miura Y (1998) Rain attenuation characteristics at 12 GHz on an earth–space path. In: 1998 International conference on microwave and millimeter wave technology proceedings, 1998. ICMMT’98. IEEE, pp 1016–1019

  • Yang H, He C, Zhu H, Song W (2000) Prediction of slant path rain attenuation based on artificial neural network. In: The 2000 IEEE international symposium on circuits and systems, 2000. Proceedings. ISCAS 2000 Geneva, vol 1. IEEE, pp 152–155

  • Yang H, He C, Zhu H, Song W (2001) Earth–space rain attenuation model based on EPNet-evolved artificial neural network. IEICE Trans Commun 84(9):2540–2549

    Google Scholar 

  • Yee TS, Kooi PS, Leong MS, Li LW (2001) Tropical raindrop size distribution for the prediction of rain attenuation of microwaves in the 10–40 GHz band. IEEE Trans Antennas Propag 49(1):80–83

    Google Scholar 

  • Yussuff AI, Khamis NH (2012) Rain attenuation modelling and mitigation in the tropics: brief review. Int J Electr Comput Eng 2(6):748–757

    Google Scholar 

  • Yussuff AI, Khamis NHH (2013) Modified ITU-R rain attenuation prediction model for a tropical station. J Ind Intell Inf 1(3)

  • Zhang W, Karhu SI, Salonen ET (1994) Predictions of radiowave attenuations due to a melting layer of precipitation. IEEE Trans Antennas Propag 42(4):492–501

    Google Scholar 

  • Zhenwei Z, Leke L, Yumei L (2003) A prediction model of rain attenuation along earth–space path. In: 2003 6th international symposium on antennas, propagation and EM theory, 2003. Proceedings. IEEE, pp 516–519

  • Zhenwei Z, Leke L, Yumei L (2004) Prediction models for rain effects on earth–space links. In: Radio science conference, 2004. Proceedings. 2004 Asia–Pacific. IEEE, pp K22–K25

Download references

Acknowledgements

The authors particularly thank the funding given from Science and Engineering Research Board, Ministry of Science and Technology (DST), Government of India, under EMR grants with F. No: EMR/2015/000100. The authors likewise thank the administration of Koneru Lakshmaiah Education Foundation (KL University) for supporting and empowering this work by giving the facilities in Center for Applied Research in Electromagnetics (CARE), Department of Electronics and Communication Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Kumar Kotamraju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotamraju, S.K., Korada, C.S.K. Precipitation and other propagation impairments effects at microwave and millimeter wave bands: a mini survey. Acta Geophys. 67, 703–719 (2019). https://doi.org/10.1007/s11600-018-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0238-7

Keywords

Navigation