Skip to main content
Log in

Implications of Necroptosis for Cardiovascular Diseases

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Necroptosis is a non-apoptotic programmed cell death pathway, which causes necrosis-like morphologic changes and triggers inflammation in the surrounding tissues. Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases. However, the exact molecular pathways linking them remain unknown. Herein, this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases, including atherosclerosis, cardiac ischemia-reperfusion injury, cardiac hypertrophy, dilated cardiomyopathy and myocardial infarction, and may shed light on the diagnosis and treatment of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Mallah MH, Sakr S, Al-Qunaibet A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update. Curr Atheroscler Rep, 2018,20(1):1

    Article  PubMed  Google Scholar 

  2. Reamy BV, Williams PM, Kuckel DP. Prevention of Cardiovascular Disease. Primary Care, 2018,45(1):25–44

    Article  PubMed  Google Scholar 

  3. Brunvand H, Oie E. Apoptosis and cardiovascular disease. Tidsskr Nor laegeforen (Norwegian), 2003,123(7):930–932

    Google Scholar 

  4. Chen Q, Thompson J, Hu Y, et al. Cardiac Specific Knockout of p53 Decreases ER Stress-Induced Mitochondrial Damage. Front Cardiovasc Med, 2019,6:10

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res, 1998,82(11):1111–1129

    Article  CAS  PubMed  Google Scholar 

  6. Mughal W, Dhingra R, Kirshenbaum LA. Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep, 2012,14(6):540–547

    Article  CAS  PubMed  Google Scholar 

  7. Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol, 2014,35:14–23

    Article  PubMed  CAS  Google Scholar 

  8. Szobi A, Goncalvesova E, Varga ZV, et al. Analysis of necroptotic proteins in failing human hearts. J Transl Med, 2017,15(1):86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ, 2007,14(7):1237–1243

    Article  CAS  PubMed  Google Scholar 

  10. Norbury CJ, Hickson ID. Cellular responses to DNA damage. Ann Rev Pharmacol Toxicol, 2001,41:367–401

    Article  CAS  Google Scholar 

  11. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2002,2(4):277–288

    Article  CAS  PubMed  Google Scholar 

  12. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004,23(16):2891–2906

    Article  CAS  PubMed  Google Scholar 

  13. Dickens LS, Powley IR, Hughes MA, et al. The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res, 2012,318(11):1269–1277

    Article  CAS  PubMed  Google Scholar 

  14. Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev, 2015,266(1):145–160

    Article  CAS  PubMed  Google Scholar 

  15. Bertrand MJ, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Molecul Cell, 2008, 30(6):689–700

    Article  CAS  Google Scholar 

  16. Alvarez SE, Harikumar KB, Hait NC, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 2010,465(7301):1084–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE, 2006,2006(357):re13

    Article  PubMed  Google Scholar 

  18. O’Donnell MA, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol, 2011,13(12):1437–1442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009,137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  20. Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009,137(6):1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009,325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  22. Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 2012,150(2):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao J, Jitkaew S, Cai Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA, 2012, 109(14):5322–5327

    Article  CAS  PubMed  Google Scholar 

  24. Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012,148(1-2):213–227

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res, 2014,24(1):105–121.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang D, Lin J, Han J. Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol, 2010,7(4):243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Su SS, Zhao S, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun, 2017,8:14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian F, Yao J, Yan M, et al. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells. Sci Rep, 2016,6: 21992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang C, Liu X, Yang F, et al. Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury. In Vitro Cell Dev Biol Anim, 2017,53(3): 248–257

    Article  CAS  PubMed  Google Scholar 

  30. Luedde M, Lutz M, Carter N, et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res, 2014,103(2): 206–216

    Article  CAS  PubMed  Google Scholar 

  31. Lusis AJ. Atherosclerosis. Nature, 2000,407(6801):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang D, Wang Z, Zhang L, et al. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediators Inflamm, 2017,2017:8135934

    PubMed  PubMed Central  Google Scholar 

  33. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation, 2002,105(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Guo LM, Wang SC, et al. Progress in studies of necroptosis and its relationship to disease processes. Pathol Res Pract, 2018,214(11):1749–1757

    Article  CAS  PubMed  Google Scholar 

  35. Dargel R. The lipid infiltration theory of atherosclerosis. Z Med Lab Dign (German), 1989,30(5):251–255

    CAS  Google Scholar 

  36. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation, 2018,15(1):199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kamanna VS, Pai R, Ha H, et al. Oxidized low-density lipoprotein stimulates monocyte adhesion to glomerular endothelial cells. Kidney Int, 1999,55(6):2192–2202

    Article  CAS  PubMed  Google Scholar 

  38. He Y, Kwan WC, Steinbrecher UP. Effects of oxidized low density lipoprotein on endothelin secretion by cultured endothelial cells and macrophages. Atherosclerosis, 1996,119(1):107–118

    Article  CAS  PubMed  Google Scholar 

  39. Lin J, Li H, Yang M, et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep, 2013,3(1):200–210

    Article  CAS  PubMed  Google Scholar 

  40. Seimon TA, Nadolski MJ, Liao X, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabol, 2010,12(5):467–482

    Article  CAS  Google Scholar 

  41. Karunakaran D, Geoffrion M, Wei L, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv, 2016,2(7):e1600224

    Article  CAS  Google Scholar 

  42. Leppanen O, Bjornheden T, Evaldsson M, et al. ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis, 2006,188(2):323–330

    Article  PubMed  CAS  Google Scholar 

  43. Yamamura T, Yamamoto A, Hiramori K, et al. A new isoform of apolipoprotein E—apo E-5—associated with hyperlipidemia and atherosclerosis. Atherosclerosis, 1984,50(2):159–172

    Article  CAS  PubMed  Google Scholar 

  44. Mahley RW, Innerarity TL, Rall SC, et al. Lipoproteins of special significance in atherosclerosis. Insights provided by studies of type III hyperlipoproteinemia. Ann N Y Acad Sci, 1985,454:209–221

    Article  CAS  PubMed  Google Scholar 

  45. Taniguchi T, Yamasaki S. Apolipoproteins and atherosclerosis—study of apolipoprotein E. Rinsho Byori (Japanese), 1984,32(7):772–779

    CAS  Google Scholar 

  46. Meng L, Jin W, Wang Y, et al. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem Biophys Res Commun, 2016,473(2):497–502

    Article  CAS  PubMed  Google Scholar 

  47. Ellulu MS, Patimah I, Khaza’ai H, et al. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology, 2016,24(1): 1–10

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z, Guo LM, Zhou HK, et al. Using drugs to target necroptosis: dual roles in disease therapy. Histol Histopathol, 2018, 33(8): 773–789

    CAS  PubMed  Google Scholar 

  49. Ruiz-Gines JA, Lopez-Ongil S, Gonzalez-Rubio M, et al. Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol, 2000,35(1):109–113

    Article  CAS  PubMed  Google Scholar 

  50. Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol, 1972, 67(3):441–452

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sjaastad I, Bentzen JG, Semb SO, et al. Reduced calcium tolerance in rat cardiomyocytes after myocardial infarction. Acta Physiol Scand, 2002,175(4):261–269

    Article  CAS  PubMed  Google Scholar 

  52. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol, 2000,190(3):255–266

    Article  CAS  PubMed  Google Scholar 

  53. Zhang T, Zhang Y, Cui M, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med, 2016,22(2):175–182

    Article  PubMed  CAS  Google Scholar 

  54. Lu W, Sun J, Yoon JS, et al. Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PloS One, 2016,11(1):e0147792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu X, Zhang C, Zhang C, et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. In Vitro Cell Dev Biol Anim, 2016,52(6):690–698

    Article  CAS  PubMed  Google Scholar 

  56. Dong XH, Liu H, Zhang MZ, et al. Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. Am J Transl Res, 2019,11(1):499–508

    PubMed  PubMed Central  Google Scholar 

  57. Guo X, Yin H, Li L, et al. Cardioprotective Role of Tumor Necrosis Factor Receptor-Associated Factor 2 by Suppressing Apoptosis and Necroptosis. Circulation, 2017,136(8):729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang S, Zhou Y, Zhao L, et al. kappa-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation. Eur J Pharmacol, 2018,833:100–108

    Article  CAS  PubMed  Google Scholar 

  59. Peng W, Zhang Y, Zhu W, et al. AMPK and TNF-alpha at the crossroad of cell survival and death in ischaemic heart. Cardiovasc Res, 2009,84(1):1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hensley N, Dietrich J, Nyhan D, et al. Hypertrophic cardiomyopathy: a review. Anesth Analg, 2015,120(3): 554–569

    Article  PubMed  Google Scholar 

  61. Drosatos K, Schulze PC. Savings precede spending: fatty acid utilization relies on triglyceride formation for cardiac energetics. Circulation, 2014,130(20):1775–1777

    Article  PubMed  PubMed Central  Google Scholar 

  62. Park EJ, Lee AY, Park S, et al. Multiple pathways are involved in palmitic acid-induced toxicity. Food Chem Toxicol, 2014,67:26–34

    Article  CAS  PubMed  Google Scholar 

  63. Zhao M, Lu L, Lei S, et al. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid. Oxid Med Cell Longev, 2016,2016:1451676

    PubMed  PubMed Central  Google Scholar 

  64. Kawano H, Okada R, Kawano Y, et al. Apoptosis in acute and chronic myocarditis. Jpn Heart J, 1994,35(6):745–750

    Article  CAS  PubMed  Google Scholar 

  65. Why HJ, Meany BT, Richardson PJ, et al. Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation, 1994,89(6):2582–2589

    Article  CAS  PubMed  Google Scholar 

  66. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Ann Rev Physiol, 2010,72:19–44

    Article  CAS  Google Scholar 

  67. Gao X, Zhang H, Zhuang W, et al. PEDF and PEDF-derived peptide 44mer protect cardiomyocytes against hypoxia-induced apoptosis and necroptosis via anti-oxidative effect. Sci Rep, 2014,4:5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith CC, Davidson SM, Lim SY, et al. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther, 2007,21(4):227–233

    Article  CAS  PubMed  Google Scholar 

  69. Liu J, Wu P, Wang Y, et al. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res, 2016,8(11):4605–4627

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Natural Science Foundation of Jiangxi Province (No. 20161bab215222), Educational Commission of Jiangxi Province of China (No. gjj150147) and Cultivation Scientific Research Fund for the Junior Teachers of Medicine in Nanchang University (No. py201826).

Conflict of Interest Statement

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Zh., Xu, Zx., Zhou, Xy. et al. Implications of Necroptosis for Cardiovascular Diseases. CURR MED SCI 39, 513–522 (2019). https://doi.org/10.1007/s11596-019-2067-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2067-6

Key words

Navigation