Skip to main content
Log in

The subdifferential descent method in a nonsmooth variational problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The paper is devoted to the classical variational problem with a nonsmooth integrand of the functional to be minimized. The integrand is supposed to be subdifferentiable. Under some natural conditions the subdifferentiability of the functional considered is proved. The problem of finding the subdifferential descent direction is solved and the subdifferential descent method is applied to solve the original problem. The algorithm developed is demonstrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rockafellar, R.T.: Existence theorems for general control problems of Bolza and Lagrange. Adv. Math. 15, 312–333 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123(1), 46–63 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rockafellar, R.T.: Integrals which are convex functionals. Pacific J. Math. 24(3), 525–539 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ortiz, N.L., Wolenski, P.R.: An existence theorem for neutral variational problems of Bolza. J. Math. Anal. Appl. 289(1), 260–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ioffe, A.D.: An existence theorem for problems of the calculus of variations. Dokl. Akad. Nauk SSSR. 205(2), 277–280 (1972)

    MathSciNet  Google Scholar 

  6. Ioffe, A.D., Rockafellar, R.T.: The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differ. Equ. 4, 59–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Loewen, P.D., Rockafellar, R.T.: New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34(5), 1496–1511 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke, F.H.: The Erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations. Canadian J. Math. 32(2), 494–509 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I, II. Springer, Berlin (2006)

    Book  Google Scholar 

  10. Mordukhovich, B.S.: Discrete Approximations and Refined Euler-Lagrange Conditions for Nonconvex Differential Inclusions. SIAM J. Control Optim. 33(3), 882–915 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zeidan, V.: Sufficient conditions for the generalized problem of Bolza. Trans. Am. Math. Soc. 275(2), 561–586 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolgopolik, M.V.: Nonsmooth problems of calculus of variations via codifferentiation. ESAIM Control Optim. Calc. Var. 20(4), 1153–1180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ioffe, A.D.: On generalized Bolza problem and its application to dynamic optimization. J. Optim. Theory Appl. 182, 285–309 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolgopolik, M.V.: Constrained nonsmooth problems of the calculus of variations. ESAIM Control Optim. Calc. Var. 27, (2021). (in print)

  15. Teo, K.L., Goh, C.J.: On constrained optimization problems with nonsmooth cost functionals. Appl. Math. Optim. 18(1), 181–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wua, C.Z., Teo, K.L., Zhaoc, Yi.: Numerical method for a class of optimal control problems subject to nonsmooth functional constraints. J. Comput. Appl. Math. 217, 311-325 (2008)

    Article  MathSciNet  Google Scholar 

  17. Tamasyan, GSh.: Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives. J. Math. Sci. 188(3), 299–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demyanov, F.V., Tamasyan, GSh.: On direct methods for solving variational problems. In: Proceedings of the Steklov Institute of Mathematics. 16(5), 36–47 (2010)

  19. Fominyh, A.V., Karelin, V.V., Polyakova, L.N.: Application of the hypodifferential descent method to the problem of constructing an optimal control. Optim. Lett. 12(8), 1825–1839 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fominyh, A.V.: Methods of subdifferential and hypodifferential descent in the problem of constructing an integrally constrained program control. Autom. Remote Control. 78, 608–617 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fominyh, A.V.: Open-loop control of a plant described by a system with nonsmooth right-hand side. Comput. Math. Math. Phys. 59(10), 1639–1648 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fominyh, A.V.: The quasidifferential descent method in a control problem with nonsmooth objective functional. Optim. Lett. 15(8), 2773–2792 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Demyanov, V.F., Vasil’ev, L.V.: Nondifferentiable Optimization. Springer-Optimization Software, New York (1986)

    Google Scholar 

  24. Vasil’ev, F.P.: Optimization Methods. Factorial Press, Moscow (2002). (in Russian)

    Google Scholar 

  25. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhauser Basel, Boston (1990)

    MATH  Google Scholar 

  26. Blagodatskikh, V.I., Filippov, A.F.: Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169, 199–259 (1986)

    MATH  Google Scholar 

  27. Munroe, M.E.: Introduction to Measure and Integration. Addison-Wesley, Massachusetts (1953)

    MATH  Google Scholar 

  28. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Dover Publications Inc., New York (1999)

    Google Scholar 

  29. Dunford, N., Schwartz, J.T.: Linear Operators, Part 1: General Theory. Interscience Publishers Inc., New York (1958)

    MATH  Google Scholar 

  30. Filippov, A.F.: On certain questions in the theory of optimal control. J. Soc. Indus. Appl. Math. Series A Control. 1(1), 76–84 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Demyanov, F.F., Malozemov, V.N.: Introduction to Minimax. Dover Publications Inc., New York (1990)

    Google Scholar 

  32. Wolfe, P.: The simplex method for quadratic programming. Econom. 27, 382–398 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dolgopolik, M.V.: The alternating direction method of multipliers for finding the distance between ellipsoids. Appl. Math. Comput. 409, 1–19 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Ryaben’kii, V.S.: Introduction to Computational Mathematics. Fizmatlit, Moscow (2008). (in Russian)

    Google Scholar 

  35. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions. Optimization. 65(6), 1167–1202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to his colleagues Maksim Dolgopolik and Grigoriy Tamasyan for numerous fruitful discussions and to the anonymous referee, whose comments helped to significantly improve the paper. The work was supported by the Russian Science Foundation (project no. 21-71-00021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fominyh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fominyh, A.V. The subdifferential descent method in a nonsmooth variational problem. Optim Lett 17, 675–698 (2023). https://doi.org/10.1007/s11590-022-01897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01897-3

Keywords

Navigation