Skip to main content
Log in

A hybrid method for solving systems of nonsmooth equations with box constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper proposes a hybrid method for solving systems of nonsmooth equations with box constraints, which combines the idea of Levenberg–Marquard-like method with the nonmonotone strategy and the smoothing approximation technique. Under mild assumptions, the proposed method is proven to possess global and local superlinear convergence. Preliminary numerical results are reported to show the efficiency of this proposed method in practical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pang, J.S., Qi, L.Q.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)

    Article  MathSciNet  Google Scholar 

  2. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  3. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  4. Qi, L.Q.: A nonsmooth version of Newton’s methods. Math. Prog. 58, 353–368 (1993)

    Article  MathSciNet  Google Scholar 

  5. Qi, L.Q., Wei, Z.X., Yuan, G.L.: An active-set projected trust region algorithm with limited memory BFGS technique for box constrained nonsmooth equations. Optimization 62, 857–878 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ou, Y.G.: A superlinearly convergent ODE-type trust region algorithm for nonsmooth nonlinear equations. J. Appl. Math. Comput. 22, 371–380 (2006)

    Article  MathSciNet  Google Scholar 

  7. Ling, C., Wang, G.F., He, H.J.: A new Levenberg–Marquardt type algorithm for solving nonsmooth constrained equations. Appl. Math. Comput. 229, 107–122 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bian, W., Chen, X.J.: Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation. IEEE Trans. Neural Netw. Learn. Syst. 25, 545–556 (2014)

    Article  Google Scholar 

  9. Zhou, S., Yuan, G.L., Cui, Z., Duan, X.B., Wang, X.L.: An adaptive trust region algorithm for large-residual nonsmooth least squares problems. J. Ind. Manag. Optim. 14, 707–718 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Chen, X.J.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Prog. 134, 71–99 (2012)

    Article  MathSciNet  Google Scholar 

  11. Yang, L., Chen, Y.P., Tong, X.J., Deng, C.L.: A new smoothing Newton method for solving constrained nonlinear equations. Appl. Math. Comput. 217, 9855–9863 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Grippo, L., Lamparillo, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  Google Scholar 

  13. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gu, N.Z., Mo, J.T.: Incorporating nonmonotone strategies into the trust region method for unconstrained optimization. Comput. Math. Appl. 55, 2158–2172 (2008)

    Article  MathSciNet  Google Scholar 

  15. Ou, Y.G., Zhou, X.: A modified scaled memoryless BFGS preconditioned conjugate gradient algorithm for nonsmooth convex optimization. J. Ind. Manag. Optim. 14, 785–801 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Yu, Z.S.: On the global convergence of a Levenberg–Marquardt method for constrained nonlinear equation. J. Appl. Math. Comput. 16, 183–194 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  Google Scholar 

  18. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. Computing 15, 237–249 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Powell, M.J.D.: A hybrid method for solving nonlinear equations. In: Rabinowitz, P. (ed.) Numerical Methods for Nonlinear Algebraic. Gordon and Breach Science, London (1970)

    Google Scholar 

  20. Fletcher, R., Xu, C.X.: Hybrid methods of nonlinear least squares. IMA J. Numer. Anal. 7, 371–389 (1987)

    Article  MathSciNet  Google Scholar 

  21. Nocedal, J., Yuan, Y.X.: Combing trust region and line search techniques. In: Yuan, Y.X. (ed.) Advances in Nonlinear Programming, pp. 153–175. Kluwer Academic, Dordrecht (1998)

    Chapter  Google Scholar 

  22. Khan, S.H.: A Picard–Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 69 (2013)

    Article  MathSciNet  Google Scholar 

  23. Ou, Y.G., Wang, G.S.: A hybrid ODE-based method for unconstrained optimization problems. Comput. Optim. Appl. 53, 249–270 (2012)

    Article  MathSciNet  Google Scholar 

  24. Petrović, M., Rakočević, V., Kontrec, N., Panić, S., Ilić, D.: Hybridization of accelerated gradient descent method. Numer. Algorithms 79, 769–786 (2018)

    Article  MathSciNet  Google Scholar 

  25. Petrovic, M.J., Stanimirovic, P.S., Kontrec, N., Mladenovic, J.: Hybrid modification of accelerated double direction method. Math. Prob. Eng. Volume 2018, Article ID 1523267 (2018)

  26. Ou, Y.G.: A hybrid trust region algorithm for unconstrained optimization. Appl. Numer. Math. 61, 900–909 (2011)

    Article  MathSciNet  Google Scholar 

  27. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Prog. Ser. A 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the associate editor for their patience and valuable comments and suggestions that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigui Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NNSF of China (Nos. 11961018, 11261015) and NSF of Hainan Province (No. 2016CXTD004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Lin, H. A hybrid method for solving systems of nonsmooth equations with box constraints. Optim Lett 14, 2355–2377 (2020). https://doi.org/10.1007/s11590-020-01558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01558-3

Keywords

Navigation