Skip to main content
Log in

A Leslie–Gower type predator-prey model considering herd behavior

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In 1959 Crawford S. Holling formulated a classification to model the action of the predators over their prey, doing empirical works. In this taxonomy, he introduced only three types of functional responses dependent only on the prey population, which are described by saturated functions. Later, various other types have been proposed, including the functional responses dependent on both populations. This work concerns the study of the Leslie–Gower type predator-prey model, incorporating the Rosenzweig functional response described by a power law. The elected function does not conform to the types proposed by Holling since it is unbounded, being, besides, non-differentiable for \(x = 0\); nonetheless, the obtained system is Lipschitzian. Moreover, the existence of a separatrix curve \(\Sigma \) in the phase plane is proven, which is divided into two complementary sectors. According to the position of the initial conditions with respect to the curve, the trajectories can have different \(\omega \)-limit sets, which can be the equilibrium \(\left( 0,0\right) \), or a positive equilibrium, or a heteroclinic curve, or a stable limit cycle. These properties show the great difference of this model with the original Leslie–Gower model, in which a unique positive equilibrium exists, which is globally asymptotically stable, when it exists. Then, the analyzed system has a richer dynamic than the original system in which a linear functional response is considered, also unbounded. Numerical simulations and bifurcation diagrams are given to endorse our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12, 2319–2338 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arancibia-Ibarra, C.: The basins of attraction in a Modified May–Holling–Tanner predator-prey model with Allee effect. Nonlinear Anal. 185, 15–28 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ardito, A., Ricciardi, P.: Lyapunov functions for a generalized Gause-type model. J. Math. Biol. 33, 816–828 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bacaër, N.: A Short History of Mathematical Population Dynamics Springer–Verlag London (2011)

  5. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific Publishing Co. Pvt. Ltd. (1998)

  6. Berryman, A.A., Gutierrez, A.P., Arditi, R.: Credible, parsimonious and useful predator-prey models—a reply to Abrams, Gleeson, and Sarnelle. Ecology 76, 1980–1985 (1995)

    Article  Google Scholar 

  7. Birkhoff, G., Rota, G.S.: Ordinary Differential Equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  8. Bravo, J.L., Fernández, M., Gámez, M., Granados, B., Tineo, A.: Existence of a polycycle in non-Lipschitz Gause-type predator-prey models. J. Math. Anal. Appl. 373, 512–520 (2011)

    Article  MathSciNet  Google Scholar 

  9. Braza, P.A.: Predator-prey dynamics with square root functional responses. Nonlinear Anal.: Real World Appl. 13, 1837–1843 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bulai, I.M., Venturino, E.: Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141, 40–55 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chicone, C.: Ordinary differential equations with applications. In: Texts in Applied Mathematics, vol. 34, 2nd edn. Springer (2006)

  12. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn. Wiley (1990)

  13. Clark, C.W.: The Worldwide Crisis in Fisheries. Economic Models and Human Behavior. Cambridge University Press (2006)

  14. Dhooge, A., Govaerts, W., Kuznetsov, Y.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29, 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  15. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer (2006)

  16. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker (1980)

  17. Gaiko, V.A.: Global bifurcation theory and Hilbert’s sixteenth problem. In: Mathematics and its Applications, vol. 559. Kluwer Academic Publishers (2003)

  18. Gause, G.F.: The Struggle for Existence. Dover (1934)

  19. Goh, B.-S.: Management and Analysis of Biological Populations. Elsevier Scientific Publishing Company (1980)

  20. González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., Flores, J.D.: Dynamical complexities in the Leslie–Gower predator-prey model as consequences of the Allee effect on prey. Appl. Math. Model. 35, 366–381 (2011)

    Article  MathSciNet  Google Scholar 

  21. González-Olivares, E., Rojas-Palma, A.: Allee effect in Gause type predator-prey models: existence of multiple attractors, limit cycles and separatrix curves. A brief review. Math. Model. Nat. Phenom. 8(6), 143–164 (2013)

    Article  MathSciNet  Google Scholar 

  22. Gonzàlez-Olivares, E., Rivera-Estay, V., Rojas-Palma, A., Vilches-Ponce, K.: A modified Leslie-Gower predation model considering a generalist predator and the Rosenzweig functional response (2022) (submitted)

  23. Hesaaraki, M., Moghadas, S.M.: Existence of limit cycles for predator-prey systems with a class of functional responses. Ecol. Model. 142, 1–9 (2001)

    Article  Google Scholar 

  24. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  25. Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator-prey Venturino, Social behavior-induced multistability in minimal competitive models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  Google Scholar 

  26. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer (2004)

  27. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  28. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  29. May, R.M.: Stability and Complexity in Model Ecosystems, 2nd edn. Princeton University Press (2001)

  30. Melchionda, D., Pastacaldi, E., Perri, C., Banerjee, M., Venturino, E.: Social behavior-induced multistability in minimal competitive ecosystems. J. Theor. Biol. 439, 24–38 (2018)

    Article  MathSciNet  Google Scholar 

  31. Monzón, P.: Almost global attraction in planar systems. Syst. Control Lett. 54, 753–758 (2005)

    Article  MathSciNet  Google Scholar 

  32. Myerscough, M.R., Darwen, M.J., Hogarth, W.L.: Stability, persistence and structural stability in a classical predator-prey model. Ecol. Model. 89, 31–42 (1996)

    Article  Google Scholar 

  33. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer (2001)

  34. Ramos-Jiliberto, R., González-Olivares, E.: Regulaci ón de la tasa intrínseca de crecimiento poblacional de los depredadores: modificación a una clase de modelos de depredación. Rev. Chil. Hist. Nat. 69, 271–280 (1996). (in Spanish)

  35. Rantzer, A.: A dual to Lyapunov’s stability theorem. Syst. Control Lett. 42(3), 161–168 (2001)

  36. Rivera-Estay, V.: Un Modelo de Leslie–Gower con Respuesta Funcional no Diferenciable (A Leslie–Gower Type Model with Non-differentiable Functional Respose). Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaí so, Licenciate final work (2013). (in Spanish)

  37. Rivera-Estay, V., González-Olivares, E., Rojas-Palma, A., Vilches-Ponce, K.: Dynamics of a class of predation models with a non-differentiable functional response. In: Dutta, H., Peters, J.F. (eds.) Applied Mathematical Analysis: Theory, Methods, and Applications, pp. 433–457. Springer (2020)

  38. Rosenzweig, M.L.: “Paradox of enrichment”: destabilization of exploitation ecosystem in ecological time. Science 171, 385–387 (1971)

  39. Sáez, E., González-Olivares, E.: Dynamics on a predator-prey model. J. SIAM Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  Google Scholar 

  40. Sáez, E., Szántó, I.: A polycycle and limit cycles in a non-differentiable predator-prey model. Proc. Indian Acad. Sci. (Math. Sci.) 117, 219–231 (2007)

    Article  MathSciNet  Google Scholar 

  41. Tintinago-Ruiz, P.C., Gallego-Berrío, L.M., González-Olivares, E.: Una clase de modelo de depredación del tipo Leslie–Gower con respuesta funcional racional no monotónica y alimento alternativo para los depredadores. Sel. Mat. 06(2), 204–216 (2019). ((in spanish))

    Article  Google Scholar 

  42. Turchin, P.: Complex population dynamics. A theoretical/empirical synthesis. In: Mongraphs in Population Biology, vol. 35. Princeton University Press (2003)

  43. Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14, 37–47 (2013)

  44. Vilches-Ponce, K.: Dinámicas de un modelo de depredaci ón del tipo Gause con respuesta funcional no diferenciable (Dynamics of a Gause type predator-prey model with non-differentiable functional response). Master Thesis, Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaíso (2009) (in Spanish)

  45. Vilches, K., González-Olivares, E., Rojas-Palma, A.: Prey herd behavior modeled by a generic non-differential functional response. Math. Model. Nat. Phenom. 13, 26 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank professor professor Claudio Arancibia-Ibarra, of the Universidad de las Américas, Viña del Mar, Chile, for the elaboration of the Diagram of Bifurcations. The fourth author (KVP) was partially financed by Conicyt PAI/Academia 79150021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo González-Olivares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Olivares, E., Rivera-Estay, V., Rojas-Palma, A. et al. A Leslie–Gower type predator-prey model considering herd behavior. Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-022-00694-5

Keywords

Mathematics Subject Classification

Navigation