Skip to main content

Advertisement

Log in

Electrochemical behavior of LiNi0.6Mn0.2Co0.2O2 cathode in different aqueous electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the past decade, there has been a growing interest in aqueous lithium-ion batteries (LiBs) since they are a lower cost and safer alternative to their traditional organic versions. Such interest is fueled by the need for large-scale stationary energy storage systems. The introduction of “water-in-salt” LiTFSI electrolyte has paved the way for higher voltage aqueous batteries, thereby helping their energy densities. LiNi0.6Mn0.2Co0.2O2 (NMC 622) is a promising cathode material for aqueous LiBs owing to its high operating voltage and lithium capacity. However, there is no report of its use in aqueous electrolytes. NMC 622 was tested in Li2SO4, LiNO3, and “water-in-salt” LiTFSI aqueous electrolytes for the first time in this study. Our results showed that NMC 622 exhibits excellent electrochemical performance in LiTFSI electrolyte reaching a maximum discharge capacity of 152 mAh g−1. On the other hand, fast capacity decay and rise in overpotential are observed in cases of nitrate and sulfate electrolytes. This study highlights the significance of electrolyte composition and states that high-nickel cathodes in “water-in-salt” LiTFSI electrolyte present promise for future aqueous LiBs.

Cyclic voltammetry scans of LiNi0.6Mn0.2Co0.2O2 electrode in aqueous electrolytes with varying lithium concentration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li W, Dahn JR, Wainwright DS (1994) Recharegable lithium batteries with aqueous electrolytes. Science 264:1115–1118

    Article  CAS  Google Scholar 

  2. Nakayama N, Nozawa T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface. J Power Sources 174:695–700

    Article  CAS  Google Scholar 

  3. Manjunatha H, Venkatesha TV, Suresh GS (2011) Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode. J Solid State Electrochem 16:1941–1953

    Article  Google Scholar 

  4. Zhao M, Zhang B, Huang G, Zhang H, Song X (2013) Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte. J Power Sources 232:181–186

    Article  CAS  Google Scholar 

  5. Zhou D, Liu S, Wang H, Yan G (2013) Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance. J Power Sources 227:111–117

    Article  CAS  Google Scholar 

  6. Zhao N, Fan H, Zhang M, Ma J, Zhang W, Wang C, Li H, Jiang X, Cao X (2019) Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim Acta 321:134681–134689

    Article  CAS  Google Scholar 

  7. Zhao N, Fan H, Ma J, Zhang M, Wang C, Li H, Jiang X, Cao X (2019) Entire synergistic contribution of electrodeposited battery-type NiCo2O4@Ni4.5Co4.5S8 composite for high-performance supercapacitors. J Power Sources 439:227097–227107

    Article  CAS  Google Scholar 

  8. Wang X, Qu Q, Hou Y, Wang F, Wu F (2013) An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chem Commun 49:6179–6181

    Article  CAS  Google Scholar 

  9. Ruffo R, Wessells R, Huggins RA, Cui Y (2009) Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem Commun 11:247–249

    Article  CAS  Google Scholar 

  10. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GC, Venkatesha TV (2012) Electrochemical characterization of polypyrrole–LiNi1/3Mn1/3Co1/3O2 composite cathode material for aqueous rechargeable lithium batteries. J Solid State Electrochem 16:1279–1290

    Article  CAS  Google Scholar 

  11. Kohler J, Makihara H, Uegaito H, Inoue H, Toki M (2000) LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim Acta 46:59–65

    Article  CAS  Google Scholar 

  12. Shkrob IA, Gilbert JA, Philips PJ, Klie R, Haasch RT, Bareno J, Abraham DP (2017) Chemical weathering of layered Ni-rich oxide electrode materials: evidence for cation exchange. J Electrochem Soc 164:A1489–A1498

    Article  CAS  Google Scholar 

  13. Liu H, Yang Y, Zhang J (2006) Investigation and improvement of on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J. Power Sources 162:644–650

    Article  CAS  Google Scholar 

  14. Zhang X, Jiang WJ, Zhu XP, Mauger A, Julien CM (2011) Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O. J. Power Sources 196:5102–5108

    Article  CAS  Google Scholar 

  15. Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938–943

    Article  CAS  Google Scholar 

  16. Chena Y, Lia Y, Tangb S, Leia T, Denga S, Xuea L, Caoa G, Zhua J (2018) Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413

    Article  Google Scholar 

  17. Ahn W, Lim SN, Jung KN, Yeon SH, Kim KB, Song HS, Shin KH (2014) Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries. J Alloys Compd 609:143–149

    Article  CAS  Google Scholar 

  18. Kong JZ, Chen Y, Cao YQ, Wang QZ, Li AD, Li H, Zhou F (2019) Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating. J Alloys Compd 799:89

    Article  CAS  Google Scholar 

  19. Yuan J, Wen J, Zhang J, Chen D, Zhang D (2017) Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim Acta 230:116–122

    Article  CAS  Google Scholar 

  20. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Ma L (2019) Solvothermally synthesized Li(Ni0.6Co0.2Mn0.2)xCd1-xO2 cathode materials with excellent electrochemical performance for lithium-ion batteries. Ionics 25:5655–5667

    Article  CAS  Google Scholar 

  21. Yaoa X, Xua Z, Yaoa Z, Chenga W, Gaob H, Zhaoa Q, Lia J, Zhoua A (2019) Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries. Mater Today Commun 19:262–270

    Article  Google Scholar 

  22. Heubner C, Nickol A, Seeba J, Reuber S, Junker N, Wolter M, Schneider M, Michealis A (2019) Understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries. J Power Sources 419:119–126

    Article  CAS  Google Scholar 

  23. Huang B, Yang XW, Xu GD, Wang M, Gu YJ (2019) Boron-doped single crystal LiNi0.6Co0.2Mn0.2O2 with improved electrochemical performance for lithium-ion batteries. Ionics 25:5819–5927

    Article  CAS  Google Scholar 

  24. Wang YG, Luo JG, Wang CX, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: II. Comparison of LiMn2O4, LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2, and LiCoO2 positive electrodes. J Electrochem Soc 153:A1425–A1431

    Article  CAS  Google Scholar 

  25. Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A (2016) Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat Energy 1:16129

    Article  CAS  Google Scholar 

  26. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  27. Liu J, Jiang X, Zhang Y, Dong P, Duan J, Zhang Y, Luo Y, Fu Z, Yao Y, Zhu C, Yu X, Zhan Z (2018) Improvement of high-voltage electrochemical performance of surface modified LiNi0.6Co0.2Mn0.2O2 cathode by La2O3 coating. Int J Electrochem Sci 13:9816–9825

    Article  CAS  Google Scholar 

  28. Ruan Y, Song X, Fu Y, Song C, Battaglia V (2018) Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials. J Power Sources 400:539–548

    Article  CAS  Google Scholar 

  29. Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901

    Article  CAS  Google Scholar 

  30. Jiang J, Liu B, Liu G, Qian D, Yang C, Li J (2018) A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemcail double-layer capacitors. Electrochim Acta 274:121–130

    Article  CAS  Google Scholar 

  31. Borodin O, SuO L, Gobet M, Ren X, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding MS, Gobrogge E, Cresce AW, Munoz S, Dura JA, Greenbaum S, Wang C, Xu K (2017) Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11:10462–10471

    Article  CAS  Google Scholar 

  32. Tian C, Nordlund D, Xin HL, Xu Y, Liu Y, Sokaras D, Lin F, Doeff MM (2018) Depth-dependent redox behavior of LiNi0.6Co0.2Mn0.2O2. J Electrochem Soc 165:A696–A704

    Article  CAS  Google Scholar 

  33. Kunduraci M (2018) Hybrid MnO/Ni Li-ion battery anode material with enhanced capacity retention. Int J Electrochem Sci 13:7397–7407

    Article  CAS  Google Scholar 

  34. Yan H, Zhang D, Xu J, Lu Y, Liu Y, Qiu K, Zhang Y, Luo Y (2014) Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res Lett 9:424

    Article  Google Scholar 

Download references

Funding

This project was funded by TÜBİTAK under project number 217M113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Kunduraci.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunduraci, M., Mutlu, R.N. & Gizir, A.M. Electrochemical behavior of LiNi0.6Mn0.2Co0.2O2 cathode in different aqueous electrolytes. Ionics 26, 1663–1672 (2020). https://doi.org/10.1007/s11581-020-03490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03490-z

Keywords

Navigation