Skip to main content
Log in

Tea polyphenols as a novel reaction-type electrolyte additive in lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, we reported tea polyphenols (TP) as a novel, cheap, environment-friendly and easy dissolution in common electrolytes reaction-type electrolyte additive for the graphite anode of the lithium-ion batteries. The TP can capture less stable radical anions that are harmful to oxidation stability of ethylene carbonate (EC) to form stable polymer. To a certain extent, it improved the electrochemical performance of the graphite electrode such as reversible capacity and cyclic stability by charge-discharge test, cyclic voltammetry (CV), scanning electron microscope (SEM), and electrochemical impedance microscope (EIS). The first charge capacities of the graphite electrodes in electrolytes without and with TP were 327.1 and 349.1 mAh g−1, respectively. The charge capacities were 306.8 and 344.2 mAh g−1 after 100 cycles and the capacity retention were 93.79 and 98.60%, respectively. The improvement was benefited from the effective scavenging the less stable radical anions and improvement the oxidation stability of EC and formation of a stable, compact and thin solid electrolyte interface (SEI) film with lower resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moradi B, Botte GG (2015) Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46:123–148

    Article  CAS  Google Scholar 

  2. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li 4 Ti 5 O 12 anodes for Li ion batteries. J Power Sources 239:269–276. https://doi.org/10.1016/j.jpowsour.2013.03.141

    Article  CAS  Google Scholar 

  3. Buqa H, Würsig A, Vetter J, Spahr ME, Krumeich F, Novák P (2006) SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J Power Sources 153(2):385–390. https://doi.org/10.1016/j.jpowsour.2005.05.036

    Article  CAS  Google Scholar 

  4. Li S, Xu X, Shi X, Li B, Zhao Y, Zhang H, Li Y, Zhao W, Cui X, Mao L (2012) Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane. J Power Sources 217:503–508. https://doi.org/10.1016/j.jpowsour.2012.05.114

    Article  CAS  Google Scholar 

  5. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162(2):1379–1394. https://doi.org/10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  6. Zhao M, Zuo X, Ma X, Xiao X, Yu L, Nan J (2016) Diphenyl disulfide as a new bifunctional film-forming additive for high-voltage LiCoO 2/graphite battery charged to 4.4 V. J Power Sources 323:29–36. https://doi.org/10.1016/j.jpowsour.2016.05.052

    Article  CAS  Google Scholar 

  7. Wagner R, Brox S, Kasnatscheew J, Gallus DR, Amereller M, Cekic-Laskovic I, Winter M (2014) Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries. Electrochem Commun 40:80–83. https://doi.org/10.1016/j.elecom.2014.01.004

    Article  CAS  Google Scholar 

  8. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140. https://doi.org/10.1016/j.nanoen.2017.02.037

    Article  CAS  Google Scholar 

  9. Jurng S et al (2016) Low-temperature characteristics and film-forming mechanism of elemental sulfur additive on graphite negative electrode. J Electrochem Soc 163:A223–A228

    Article  CAS  Google Scholar 

  10. Abe K, Yoshitake H, Kitakura T, Hattori T, Wang H, Yoshio M (2004) Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim Acta 49(26):4613–4622. https://doi.org/10.1016/j.electacta.2004.05.016

    Article  CAS  Google Scholar 

  11. Aurbach D, Gnanaraj JS, Geissler W, Schmidt M (2004) Vinylene carbonate and Li salicylatoborate as additives in LiPF3 ( CF 2 CF 3 ) 3 solutions for rechargeable Li-ion batteries. J Electrochem Soc 151(1):A23–A30. https://doi.org/10.1149/1.1631820

    Article  CAS  Google Scholar 

  12. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47(9):1423–1439. https://doi.org/10.1016/S0013-4686(01)00858-1

    Article  CAS  Google Scholar 

  13. Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y (2013) Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO 4 electrode. Electrochim Acta 87:466–472. https://doi.org/10.1016/j.electacta.2012.09.083

    Article  CAS  Google Scholar 

  14. Shin H, Park J, Sastry AM, Lu W (2015) Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures. J Electrochem Soc 162(9):A1683–A1692. https://doi.org/10.1149/2.0071509jes

    Article  CAS  Google Scholar 

  15. Xu SD et al (2013) New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries. Int J Electrochem Sci 8:8058–8076

    CAS  Google Scholar 

  16. Liu JQ, Zhuang QC, Shi YL, Yan X, Zhao X, Chen X (2016) Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Adv 6(49):42885–42891. https://doi.org/10.1039/C6RA04839K

    Article  CAS  Google Scholar 

  17. Ein-Eli Y, Thomas SR, Koch VR (1997) The role of SO 2 as an additive to organic Li-ion battery electrolytes. J Electrochem Soc 144(4):1159–1165. https://doi.org/10.1149/1.1837566

    Article  CAS  Google Scholar 

  18. Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Jannakoudakis PD, Theodoridou E (1993) Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes. J Power Sources 44(1-3):413–420. https://doi.org/10.1016/0378-7753(93)80183-P

    Article  CAS  Google Scholar 

  19. Simon B, Boeuve JP, Broussely M (1993) Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents. J Power Sources 43(1-3):65–74. https://doi.org/10.1016/0378-7753(93)80102-U

    Article  CAS  Google Scholar 

  20. Besenhard JO, Castella P, Wagner MW (1992) Corrosion protection of LiC n anodes in rechargeable organic electrolyte batteries. Mater Sci Forum 91-93:647–652. https://doi.org/10.4028/www.scientific.net/MSF.91-93.647

    Article  CAS  Google Scholar 

  21. Ein-Eli Y et al (1995) The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition. ChemInform 26:2559–2569

    Google Scholar 

  22. Lee JT, Wu MS, Wang FM, Lin YW, Bai MY, Chiang PCJ (2005) Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. J Electrochem Soc 152(9):A1837–A1843. https://doi.org/10.1149/1.1993407

    Article  CAS  Google Scholar 

  23. Wang C, Nakamura H, Komatsu H, Yoshio M, Yoshitake H (1998) Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. J Power Sources 74(1):142–145. https://doi.org/10.1016/S0378-7753(98)00017-2

    Article  CAS  Google Scholar 

  24. Ufheil J, Baertsch MC, Würsig A, Novák P (2005) Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim Acta 50(7-8):1733–1738. https://doi.org/10.1016/j.electacta.2004.10.061

    Article  CAS  Google Scholar 

  25. Shahabadi N, Maghsudi M, Kiani Z, Pourfoulad M (2011) Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin. Food Chem 124(3):1063–1068. https://doi.org/10.1016/j.foodchem.2010.07.079

    Article  CAS  Google Scholar 

  26. Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71:1698s–1702s

    Article  CAS  PubMed  Google Scholar 

  27. Yang CS, Lambert JD, Sang S (2009) Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 83(1):11–21. https://doi.org/10.1007/s00204-008-0372-0

    Article  CAS  PubMed  Google Scholar 

  28. Hu C, Kitts DD (2001) Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American ginseng extracts. J Am Oil Chem Soc 78(3):249–255. https://doi.org/10.1007/s11746-001-0253-8

    Article  CAS  Google Scholar 

  29. Corongiu F, Banni S, Dessi M, Rice-Evans C, Pryor WA (1994) Free radicals and antioxidants in nutrition, volume VII : 437 pp., 1993. Free Radic Biol Med 17(5):489–489. https://doi.org/10.1016/0891-5849(94)90177-5

    Article  Google Scholar 

  30. Akhavan O, Kalaee M, Alavi ZS, Ghiasi SMA, Esfandiar A (2012) Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8):3015–3025. https://doi.org/10.1016/j.carbon.2012.02.087

    Article  CAS  Google Scholar 

  31. Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114(1):88–95. https://doi.org/10.1016/S0378-7753(02)00533-5

    Article  CAS  Google Scholar 

  32. Zhang XW, Patil PK, Wang C, Appleby AJ, Little FE, Cocke DL (2004) Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J Power Sources 125(2):206–213. https://doi.org/10.1016/j.jpowsour.2003.07.019

    Article  CAS  Google Scholar 

  33. Chu YQ, Fu ZW, Qin QZ (2004) Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim Acta 49(27):4915–4921. https://doi.org/10.1016/j.electacta.2004.06.012

    Article  CAS  Google Scholar 

  34. Choi WC, Byun D, Lee JK, Cho B (2004) Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries. Electrochim Acta 50(2-3):523–529. https://doi.org/10.1016/j.electacta.2003.12.070

    Article  CAS  Google Scholar 

  35. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133(10):3275S–3284S

    Article  CAS  PubMed  Google Scholar 

  36. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, Wan X (2017) Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem 231:19–24. https://doi.org/10.1016/j.foodchem.2017.02.106

    Article  CAS  PubMed  Google Scholar 

  37. Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D (1996) Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy. J Power Sources 63(1):33–39. https://doi.org/10.1016/S0378-7753(96)02439-1

    Article  CAS  Google Scholar 

  38. Chusid O et al (1993) Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems. J Power Sources 43(1-3):47–64. https://doi.org/10.1016/0378-7753(93)80101-T

    Article  CAS  Google Scholar 

  39. Holzapfel M, Martinent A, Alloin F, le Gorrec B, Yazami R, Montella C (2003) First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem 546:41–50. https://doi.org/10.1016/S0022-0728(03)00144-X

    Article  CAS  Google Scholar 

  40. Chang YC, Sohn HJ (2000) Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons. J Electrochem Soc 147(1):50–58. https://doi.org/10.1149/1.1393156

    Article  CAS  Google Scholar 

  41. Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89(2):206–218. https://doi.org/10.1016/S0378-7753(00)00431-6

    Article  CAS  Google Scholar 

  42. Levi MD, Aurbach D (2005) Distinction between energetic inhomogeneity and geometric non-uniformity of ion insertion electrodes based on complex impedance and complex capacitance analysis. J Phys Chem B 109(7):2763–2773. https://doi.org/10.1021/jp045788c

    Article  CAS  PubMed  Google Scholar 

  43. And MDL, Aurbach D (1997) Simultaneous measurements and modeling of the electrochemical impedance and the cyclic Voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem B 101:4630–4640

    Article  Google Scholar 

  44. Aurbach D et al (1998) Common electroanalytical behavior of li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145(9):3024–3034. https://doi.org/10.1149/1.1838758

    Article  CAS  Google Scholar 

  45. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) Study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn). J Electrochem Soc 147(4):1322–1331. https://doi.org/10.1149/1.1393357

    Article  CAS  Google Scholar 

  46. Markovsky B, Levi MD, Aurbach D (1998) The basic electroanalytical behavior of practical graphite–lithium intercalation electrodes. Electrochim Acta 43(16-17):2287–2304. https://doi.org/10.1016/S0013-4686(97)10172-4

    Article  CAS  Google Scholar 

  47. Xu SD, Zhuang QC, Tian LL, Qin YP, Fang L, Sun SG (2011) Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. J Phys Chem C 115(18):9210–9219. https://doi.org/10.1021/jp107406s

    Article  CAS  Google Scholar 

  48. Shi YL et al (2011) Electrochemical impedance spectroscopic study of the electronic and ionic transport properties of NiF2/C composites. Int J Electrochem Sci 6:3399–3415

    CAS  Google Scholar 

  49. TIAN, et al. (2011) Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chin Sci Bull 56(30):3204–3212. https://doi.org/10.1007/s11434-011-4609-6

    Article  CAS  Google Scholar 

  50. Zhuang QC et al (2010) An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. J Phys Chem C 114:8614–8621

    Article  CAS  Google Scholar 

  51. Cui Y, Yuan Z, Bao W, Zhuang Q, Sun Z (2012) Investigation of lithium ion kinetics through LiMn 2 O 4 electrode in aqueous Li 2 SO 4 electrolyte. J Appl Electrochem 42(10):883–891. https://doi.org/10.1007/s10800-012-0464-7

    Article  CAS  Google Scholar 

  52. Zhuang QC, Li J, Tian LL (2013) Potassium carbonate as film forming electrolyte additive for lithium-ion batteries. J Power Sources 222:177–183. https://doi.org/10.1016/j.jpowsour.2012.08.050

    Article  CAS  Google Scholar 

  53. Wang C, Kakwan I, Appleby AJ, Little FE (2000) In situ investigation of electrochemical lithium intercalation into graphite powder. J Electroanal Chem 489(1-2):55–67. https://doi.org/10.1016/S0022-0728(00)00197-2

    Article  CAS  Google Scholar 

  54. Wang C, Appleby AJ, Little FE (2001) Charge–discharge stability of graphite anodes for lithium-ion batteries. J Electroanal Chem 497(1-2):33–46. https://doi.org/10.1016/S0022-0728(00)00447-2

    Article  CAS  Google Scholar 

  55. Li T, Xing L, Li W, Wang Y, Xu M, Gu F, Hu S (2013) How does lithium salt anion affect oxidation decomposition reaction of ethylene carbonate: a density functional theory study. J Power Sources 244:668–674. https://doi.org/10.1016/j.jpowsour.2012.12.062

    Article  CAS  Google Scholar 

  56. Ushirogata K, Sodeyama K, Okuno Y, Tateyama Y (2013) Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery. J Am Chem Soc 135(32):11967–11974. https://doi.org/10.1021/ja405079s

    Article  CAS  PubMed  Google Scholar 

  57. Eom KS, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321. https://doi.org/10.1016/j.nanoen.2014.12.041

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the China University of Mining and Technology (2017XKQY063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueli Shi or Quanchao Zhuang.

Electronic supplementary material

ESM 1

(DOC 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, S., Liu, M., Shi, Y. et al. Tea polyphenols as a novel reaction-type electrolyte additive in lithium-ion batteries. Ionics 24, 1919–1928 (2018). https://doi.org/10.1007/s11581-018-2445-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2445-2

Keywords

Navigation