Skip to main content
Log in

Thermodynamic and kinetic investigation for peroxide hydrogen reduction reaction on nanoporous electrocatalysts

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Owing to the unique three-dimensional bi-continuous (pore and ligament) structure of nanoporous metals, active sites and electron conduction are both promoted for electrocatalytic reactions. However, the narrowing pore sizes for increasing surface areas provide more active sites but hindered mass diffusion. Therefore, there are optimal values for the ligament and pore size of nanoporous metal electrocatalysts. As an outstanding electrocatalyst towards hydrogen peroxide reduction reaction (HPRR), the structure features of nanoporous gold (NPG) were investigated in detail by using electrochemical techniques, e.g., rotating disk electrode (RDE) in this paper. The experimental results demonstrated that residual silver in NPG did not afford a positive effect for HPRR although exhibiting good catalytic activity alone. Furthermore, by comparing the thermodynamic and kinetic properties of NPG samples with various ligament/pore sizes, NPG electrocatalyst with pore size of ~ 30 nm exhibited an optimal catalytic activity and stability for HPRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghaderi S, Mehrgardi MA (2014) Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide. Bioelectrochemistry 98:64–69

    Article  CAS  Google Scholar 

  2. Ke X, Xu Y, Yu C, Zhao J, Cui G, Higgins D, Chen Z, Li Q, Xu H, Wu G (2014) Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H2O2 reduction. J Mater Chem A 2:16474–16479

    Article  CAS  Google Scholar 

  3. Morais AL, Salgado JRC, Šljukić B, Santos DMF, Sequeira CAC (2012) Electrochemical behaviour of carbon supported Pt electrocatalysts for H2O2 reduction. Int J Hydrog Energy 37:14143–14151

    Article  CAS  Google Scholar 

  4. And AK, Raman RK (2003) Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Ann Rev Mater Res 33:155–168

    Article  Google Scholar 

  5. Tachiev G, Roth JA, Bowers AR (2015) Kinetics of hydrogen peroxide decomposition with complexed and “free” iron catalysts. In J Chem Kinet 32:24–35

    Article  Google Scholar 

  6. Ensafi AA, Abarghoui MM, Rezaei B (2016) Facile synthesis of Pt-Cu@silicon nanostructure as a new electrocatalyst supported matrix, electrochemical detection of hydrazine and hydrogen peroxide. Electrochim Acta 190:199–207

    Article  CAS  Google Scholar 

  7. Gu CJ, Kong FY, Chen ZD, Fan DH, Fang HL, Wang W (2016) Reduced graphene oxide-Hemin-Au nanohybrids: facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Biosens Bioelectron 78:300–307

    Article  CAS  Google Scholar 

  8. Guo F, Ye K, Huang XM, Gao YY, Cheng K, Wang GL, Cao DX (2015) Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Adv 5:82503–82512

    Article  Google Scholar 

  9. Adams BD, Ostrom CK, Chen A (2011) Highly active PdPt catalysts for the electrochemical reduction of H2O2. J Electrochem Soc 158:B434–B439

    Article  CAS  Google Scholar 

  10. Ma M, Miao Z, Zhang D, Du X, Zhang Y, Zhang C, Lin J, Chen Q (2015) Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors. Biosens Bioelectron 64:477–484

    Article  CAS  Google Scholar 

  11. Tang YY, Kao CL, Chen PY (2012) Electrochemical detection of hydrazine using a highly sensitive nanoporous gold electrode. Anal Chim Acta 711:32–39

    Article  CAS  Google Scholar 

  12. Barman K, Jasimuddin S (2014) Electrochemical detection of adenine and guanine using a self-assembled copper(II)-thiophenyl-azo-imidazole complex monolayer modified gold electrode. RSC Adv 91:49819–49826

    Article  Google Scholar 

  13. Wittstock A, Zielasek V, Biener J, Friend CM, Baeumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    Article  CAS  Google Scholar 

  14. Ke X, Li Z, Gan L, Zhao J, Cui G, Kellogg W, Matera D, Higgins D, Wu G (2015) Three-dimensional nanoporous Au films as high-efficiency enzyme-free electrochemical sensors. Electrochim Acta 170:337–342

    Article  CAS  Google Scholar 

  15. Zeis R, Lei T, Sieradzki K, Snyder J, Erlebacher J (2015) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253:132–138

    Article  Google Scholar 

  16. Meng F, Yan X, Liu J, Gu J, Zou Z (2011) Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim Acta 56:4657–4662

    Article  CAS  Google Scholar 

  17. Xu CX, Liu YQ, Su F, Liu AH, Qiu HJ (2011) Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens Bioelectron 27:160–166

    Article  CAS  Google Scholar 

  18. Wang JP, Gao H, Sun FL, Xu CX (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensor Actuat B-Chem 191:612–618

    Article  CAS  Google Scholar 

  19. Zhao DY, Yu GL, Tian KL, Xu CX (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous ptti alloy. Biosens Bioelectron 82:119–126

    Article  CAS  Google Scholar 

  20. Li YQ, Bastakoti BP, Malgras V, Li CL, Tang J, Kim JH, Yamauchi Y (2015) Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew Chem Int Ed 54:11073–11077

    Article  CAS  Google Scholar 

  21. Li CL, Dag Ö, Dao TD, Nagao T, Sakamoto Y, Kimura T, Terasaki O, Yamauchi Y (2015) Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat Commun 6:6608–6015

    Article  CAS  Google Scholar 

  22. Ataee-Esfahani H, Imura M, Yamauchi Y (2013) All-metal mesoporous nanocolloids: solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew Chem Int Ed 52:13611–13615

    Article  CAS  Google Scholar 

  23. Malgras V, Ataeeesfahani H, Wang H, Jiang B, Li CL, KC W, Kim JH, Yamauchi Y (2016) Nanoarchitectures for mesoporous metals. Adv Mater 28:993–1010

    Article  CAS  Google Scholar 

  24. Lang XY, Zhang L, Fujita T, Ding Y, Chen MW (2012) Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. J Power Sources 197:325–329

    Article  CAS  Google Scholar 

  25. Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf: “ancient technology”/advanced material. Adv Mater 16:1897–1900

    Article  CAS  Google Scholar 

  26. Li D, Zhu Y, Wang H, Ding Y (2013) Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream. Sci Rep 3:3015–3021

    Article  Google Scholar 

  27. Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc 125:7772–7773

    Article  CAS  Google Scholar 

  28. Chen AY, Wang JW, Wang Y, Jia YQ, Gu JF, Xie XF, Pan D (2015) Effects of pore size and residual Ag on electrocatalytic properties of nanoporous gold films prepared by pulse electrochemical dealloying. Electrochim Acta 153:552–558

    Article  CAS  Google Scholar 

  29. Cheng CL, Li JS, Chen YF (2008) Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays. Mater Lett 62:1666–1669

    Article  CAS  Google Scholar 

  30. Qian LH, Chen MW (2007) Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes strongerenhancements. Appl Phys Lett 90:783–785

    Google Scholar 

  31. Deng Z, Zhang C, Liu L (2014) Chemically dealloyed MgCuGd metallic glass with enhanced catalytic activity in degradation of phenol. Intermetallics 52:9–14

    Article  CAS  Google Scholar 

  32. Tegou A, Papadimitriou S, Kokkinidis G, Sotiropoulos S (2010) A rotating disc electrode study of oxygen reduction at platinised nickel and cobalt coatings. J Solid State Electrochem 14:175–184

    Article  CAS  Google Scholar 

  33. Ciesielski PN, Scott AM, Faulkner CJ, Berron BJ, Cliffel DE, Jennings GK (2008) Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. ACS Nano 2:2465–2472

    Article  CAS  Google Scholar 

  34. Wang HD, Li TF, Ma J, Li K, Zuo X (2017) Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sens Actuator B-Chem 239:1205–1212

    Article  CAS  Google Scholar 

  35. Brummer SB, Makrides AC (1964) Surface oxidation of gold electrodes. J Electrochem Soc 111:1122–1128

    Article  CAS  Google Scholar 

  36. Jia CC, Yin HM, Ma HY, Wang RY, Ge XB, Zhou AQ, XH X, Ding Y (2009) Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J Phys Chem C 113:16138–16143

    Article  CAS  Google Scholar 

  37. Mustain WE, Prakash J (2007) Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. J Power Sources 170:28–37

    Article  CAS  Google Scholar 

  38. Cao DX, Sun LM, Wang GL, Lv YZ, Zhang ML (2008) Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium. J Electroanal Chem 621:31–37

    Article  CAS  Google Scholar 

  39. Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137:3638–3648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with Prof. Yi Ding and Dr. Cuihua An.

Funding

This work was financially supported by the National Natural Science Foundation of China (51671145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiMing Yin.

Electronic supplementary material

ESM 1

(PDF 684 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Y., Shi, S. et al. Thermodynamic and kinetic investigation for peroxide hydrogen reduction reaction on nanoporous electrocatalysts. Ionics 24, 1457–1465 (2018). https://doi.org/10.1007/s11581-017-2296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2296-2

Keywords

Navigation