Skip to main content
Log in

Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of Lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the urchin-like NiCo2O4 microspheres assembled by using sodium dodecyl sulfate (SDS) as soft template are successfully fabricated by a facile procedure including microemulsion-solvothermal reaction and subsequent calcination at 400 °C for 4 h. The structure and morphology of synthesized NiCo2O4 particles are investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It has been clearly revealed that the prepared three-dimensional urchin-like NiCo2O4 microspheres are constituted by one-dimension nanowires. As it is applied to anode for lithium-ion batteries (LIBs), the initial coulombic efficiency is up to 75.7%, and the specific reversible capacity retains up to 1034.2 mAh/g even after 40 cycles at a current density of 100 mA/g. Furthermore, as the current density gradually increases to 800 mA/g, it still delivers the reversible capacity of 895.4 mAh/g. The high reversible specific capacity, perfect cyclability, and rate performance are attributed to the unique urchin-like NiCo2O4 microspheres, which can alleviate the volume expansion and shorten the diffusion path of ions and electrons during lithiation/delithiation process. The self-standing urchin-like NiCo2O4 microspheres may be a very promising candidate in place of the commercial graphite-based anode materials for high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices [J]. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  2. Li T, Li XH, Wang ZX, Guo HJ (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2 [J]. J. Power Sources 342:495–503

    Article  CAS  Google Scholar 

  3. Xiong XH, Wang ZX, Yan GC, Guo HJ, Li XH (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery [J]. J Power Sources 245:183–193

    Article  CAS  Google Scholar 

  4. Wang RH, Li XH, Wang ZX, Guo HJ, He ZJ (2015) Electrochemical analysis for enhancing interface layer of spinel Li4Ti5O12: p-toluenesulfonyl isocyanate as electrolyte additive [J]. ACS Appl Mater Interfaces 7:23605–23614

    Article  CAS  Google Scholar 

  5. Wu XW, Xiang YH, Peng QQ, Wu XS, Li YH, Tang F, Song RC, Liu ZX, He ZQ, Wu XM (2017) A green-low-cost rechargeable aqueous zinc-ion battery using hollow porous spinel ZnMn2O4 as the cathode material [J]. J Mater Chem A 5:17990–17997

    Article  CAS  Google Scholar 

  6. Wu XW, Li YH, Xiang YH, Liu ZX, He ZQ, Wu XM, Li YJ, Xiong LZ, Li CC, Chen J (2016) The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte [J]. J Power Sources 336:35–39

    Article  CAS  Google Scholar 

  7. Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries [J]. Adv Mater 24(14):1903–1911

    Article  CAS  Google Scholar 

  8. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J]. Adv Mater 20(2):258–262

    Article  CAS  Google Scholar 

  9. Li ZH, Zhao TP, Zhan XY, Gao DS, Xiao QZ, Lei GT (2010) High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries [J]. Electrochim Acta 55(15):4594–4598

    Article  CAS  Google Scholar 

  10. Fu CC, Li GS, Luo D, Huang XS, Zheng J, Li LP (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4 [J]. ACS Appl Mater Interfaces 6(4):2439–2449

    Article  CAS  Google Scholar 

  11. Wang JX, Zhang QB, Li XH, Xu DG, Wang ZX, Guo HJ, Zhang KL (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries [J]. Nano Energy 6:19–26

    Article  CAS  Google Scholar 

  12. Leng J, Wang ZX, Li XH, Guo HJ, Li HK, Shih KM, Yan GC, Wang JX (2017) Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability [J]. J Mater Chem A 5(29):14996–15001

    Article  CAS  Google Scholar 

  13. Li T, Li XH, Wang ZX, Guo HJ, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries [J]. J Mater Chem A 3:11970–11975

    Article  CAS  Google Scholar 

  14. Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors [J]. Angew Chem Int Ed 54(6):1868–1874

    Article  CAS  Google Scholar 

  15. Shen L, Che Q, Li HS, Zhang XG (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage [J]. Adv Funct Mater 24(18):2630–2637

    Article  CAS  Google Scholar 

  16. Chen YJ, Zhu J, Qu BH, Graphene ZX (2014) Improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays [J]. Nano Energy 3:88–94

    Article  CAS  Google Scholar 

  17. Ju ZC, Ma GY, Zhao YL, Xing Z, Qiang YH, Qian YT (2015) A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for Li-ion batteries [J]. Part Part Syst Charact 32(11):1012–1019

    Article  CAS  Google Scholar 

  18. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application [J]. Int J Hydrog Energy 39(28):15627–15638

    Article  CAS  Google Scholar 

  19. Yu XY, Yao XZ, Luo T, Jia Y, Liu JH, Huang XJ (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications [J]. ACS Appl Mater Interfaces 6(5):3689–3695

    Article  CAS  Google Scholar 

  20. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals [J]. Nat Mater 2(3):145–150

    Article  CAS  Google Scholar 

  21. Li YH, Wu XW, Wang SL, Wang WQ, Xiang YH, Dai CH, Liu ZX, He ZQ, Wu XM (2017) Surfactant-assisted solvothermal synthesis of NiCo2O4 as an anode for lithium-ion batteries [J]. RSC Adv 7:36909–36916

  22. Li JF, Xiong SL, Liu YR, Ju ZC, Qian YT (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries [J]. ACS Appl Mater Interfaces 5(3):981–988

    Article  CAS  Google Scholar 

  23. Bie C, Pei J, Chen G, Zhang Q, Sun JX, Yu YG, Chen DH (2016) Hierarchical Zn3V3O8/C composite microspheres assembled from unique porous hollow nanoplates with superior lithium storage capability [J]. J Mater Chem A 4:17063–17072

    Article  CAS  Google Scholar 

  24. Shkrob IA, Zhu Y, Marin TW, Abraham DP (2013) Reduction of carbonate electrolytes and the formation of solid-electrolyte interface (SEI) in lithium-ion batteries. 2. Radiolytically induced polymerization of ethylene carbonate [J]. J Phys Chem C 117:19270–19279

    Article  CAS  Google Scholar 

  25. Soto FA, Ma Y, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2015) Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries [J]. Chem Mater 27(23):7990–8000

    Article  CAS  Google Scholar 

  26. Ni SB, Ma JJ, Zhang JC, Yang XL, Zhang LL (2015) Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction [J]. Chem Commun 51:5880–5882

    Article  CAS  Google Scholar 

  27. Xu S, Lu L, Zhang Q, Zheng H, Liu L, Yin S, Wang S, Li G, Feng C (2015) Morphology-controlled synthesis and electrochemical performance of NiCo2O4 as anode material in lithium-ion battery application [J]. J Nanopart Res 17:1–11

    Article  Google Scholar 

  28. Mondal AK, Su D, Chen S, Kretschmer K, Xie X, Ahn HJ, Wang G (2015) A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors [J]. Chem Phys Chem 16(1):169–175

  29. Tan KS, Reddy MV, Subba Rao GV, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of li(Ni0.8Co0.2)O2 [J]. J Power Sources 141:129–142

    Article  CAS  Google Scholar 

  30. Wang RH, Wang ZX, Li XH, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer [J]. Electrochim Acta 241:208–219

    Article  CAS  Google Scholar 

  31. Xiong XH, Yang CH, Wang GH, Lin YW, Ou X, Wang JH, Zhao BT, Liu ML, Lin Z, Huang K (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries [J]. Energy Environ Sci 10:1757–1763

    Article  CAS  Google Scholar 

  32. Xiong XH, Yang CH, Lin YW, Wang Y, Ou X, Zheng FH, Yang CH, Wang JH, Liu ML (2016) Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets [J]. ACS Nano 10:10953–10959

    Article  CAS  Google Scholar 

  33. Wang RH, Li XH, Wang ZX, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive [J]. Nano Energy 34:131–1401

    Article  CAS  Google Scholar 

  34. Wu QL, Xu JG, Yang XF, Lu FQ, He SM, Yang JL, Fan HJ, Wu MM (2015) Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries [J]. Adv Energy Mater 5(7):1401756–1401765

  35. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors [J]. J Am Chem Soc 131(5):1802–1809

    Article  CAS  Google Scholar 

  36. Fu F, Li JD, Yao YZ, Qin XP, Dou YB, Wang HY, Tsui J, Chan KY, Saho MH (2017) Hierarchical NiCo2O4 micro- and nanostructures with tunable morphologies as anode materials for lithium- and sodium-ion batteries [J]. ACS Appl Mater Interfaces 9(19):16194–16201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Outstanding Youth Foundation of Hunan Provincial Education Department (No. 15B190), the Planned Science and Technology Project of Science and Technology Bureau of Xiangxi Tujia and Miao Autonomous Prefecture (No. 2) and Research Innovation Project for Graduate Student (CX2017B710, JDY16015), the National Natural Science Foundation of China (Nos. 51704124, 51762017, 51662010, 51472107, and 51672104), and Natural Science Foundation of Hunan Province, China (No. 16JJ6121),which were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, X. Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of Lithium-ion batteries. Ionics 24, 1329–1337 (2018). https://doi.org/10.1007/s11581-017-2291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2291-7

Keywords

Navigation