Skip to main content
Log in

Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3-δ cathode with a dense interfacial layer at the electrode-electrolyte interface

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As for the commonly studied La0.6Sr0.4Co0.2Fe0.8O3-δ (6428), here, a very low area-specific resistance (ASR) was measured for La0.6Sr0.4Co0.8Fe0.2O3-δ (6482) cathode deposited on a Ce0.9Gd0.1O2-δ (GDC) electrolyte with addition of a thin (1 μm) dense LSCF film deposited by spin coating at the interface between the GDC electrolyte and a 40-μm-thick screen-printed electrode. The ASR ranged from 1 Ω.cm2 at 500 °C, 0.11 Ω.cm2 at 625 °C and value as low as 0.03 Ω.cm2 at 700 °C. Impedance spectra collected in between 500 and 700 °C were carefully studied. They could all be modelled with two R//CPE in series which are likely associated to the oxygen reduction reaction itself (dissociation/adsorption/ionization) at low frequency and to the oxide ion transfer at the electrode/electrolyte interface at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li W, Lu K, Xia Z (2013) J Power Sources 237:119–127

    Article  CAS  Google Scholar 

  2. Steele BCH, Bae JM (1998) Solid State Ionics 106:255–261

    Article  CAS  Google Scholar 

  3. Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ionics 121:201–208

    Article  CAS  Google Scholar 

  4. Hwang HJ, Moon JW, Lee S, Lee EA (2005) J Power Sources 145:243–248

    Article  CAS  Google Scholar 

  5. Liu M, Ding D, Blinn K, Li X, Nie L, Liu M (2012) Int J Hydrog Energy 37:8613–8620

    Article  CAS  Google Scholar 

  6. Marinha D, Dessemond L, Scott Cronin J, Wilson JR, Barnett SA, Djurado E (2011) Chem Mater 23:5340–5348

    Article  CAS  Google Scholar 

  7. Marinha D, Dessemond L, Djurado E (2011) ECS. Transactions 35(1):2283–2294

    CAS  Google Scholar 

  8. Marinha D, Hayd J, Dessemond L, Ivers-Tiffée E, Djurado E (2011) J Power Sources 196:5084–5090

    Article  CAS  Google Scholar 

  9. Hildenbrand N, Boukamp BA, Nammensma P, Blank DHA (2011) Solid State Ionics 192:12–15

    Article  CAS  Google Scholar 

  10. Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) J Power Sources 238:442–453

    Article  CAS  Google Scholar 

  11. Berenov AV, Atkinson A, Kilner JA, Bucher E, Sitte W (2010) Solid State Ionics 181:819–826

    Article  CAS  Google Scholar 

  12. Hayd J, Yokokawa H, Ivers-Tiffée E (2013) J Electrochem Soc 160:F351–F359

    Article  CAS  Google Scholar 

  13. Yamamoto O (2000) Electrochim Acta 45:2423–2435

    Article  CAS  Google Scholar 

  14. Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim/Wiley, NY (U.S.A)

    Book  Google Scholar 

  15. Ullman H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79–90

    Article  Google Scholar 

  16. Boukamp BA (1995) J Electrochem Soc 142:1885–1894

    Article  CAS  Google Scholar 

  17. ZView software, version 3.4a, Scribner Associates Inc., Southern Pines (N. C., USA)

  18. Cole KS, Cole RH (1941) J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  19. Boukamp BA (2004) Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  20. Orazem ME, Pébère N, Tribollet P (2006) J Electrochem Soc 153:B129–B136

    Article  CAS  Google Scholar 

  21. Barsoukov E, Ross MacDonald J (eds) (2005) Impedance spectroscopy: theory, experiment and applications. Wiley-Interscience, Hoboken (N. J., U.S.A)

    Google Scholar 

  22. Ibusuki Y, Kunigo H, Hirata Y, Sameshima S, Matsunaga N (2011) J Eur Ceram Soc 31(14):2663–2669

    Article  CAS  Google Scholar 

  23. Lai W, Haile SM (2005) J Am Ceram Soc 88:2979–2997

    Article  CAS  Google Scholar 

  24. Nielsen J, Jacobsen T, Wandel M (2011) Electrochim Acta 56:7963–7974

    Article  CAS  Google Scholar 

  25. Boukamp BA (1986) Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  26. Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid. State Ionics 177(11–12):1071–1081

    Article  CAS  Google Scholar 

  27. K. Dumaisnil, Ph. D thesis University of Littoral-Côte d’Opale (2015) Calais (France)

  28. Adler SB (2004) Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  29. Simrick NJ, Bieberle-Hütter A, Ryll TM, Kilner JA, Atkinson A, Rupp JLM (2012) Solid State Ionics 206:7–16

    Article  CAS  Google Scholar 

  30. Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155:B36–B41

    Article  CAS  Google Scholar 

  31. Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid State Ionics 177(35–36):3187–3191

    Article  CAS  Google Scholar 

  32. Zoltowski P (1998) J Electroanal Chem 443:149–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Région Nord-Pas de Calais for the attribution of an “Emergent Project” called OPERAH which funded a part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Carru.

Appendix

Appendix

The complex impedance of a resistance R in parallel with a constant phase element CPE circuit can easily be calculated and the determination of the characteristic parameters such as F C, R, α, Q and C can be made.

For the definition of the CPE, we took the one proposed by P. Zoltowski [32] as follows:

$$ {Z}^{\ast}\left(\mathrm{CPE}\right)=\frac{1}{Q\kern0.5em {\left( j\omega \right)}^{\alpha}}\kern0.5em \mathrm{with}\kern0.5em -1\le \alpha \le +1\kern0.5em \mathrm{and}\kern0.5em Q>0, $$
(1)

α and Q are constants independent of frequency but which could depend on temperature. Moreover, Q is directly proportional to the active area.

The complex impedance of the R//CPE circuit can be written as follows:

$$ {Z}^{\ast }=\frac{R}{1+ RQ{\left( j\omega \right)}^{\alpha}}=\frac{R}{1+ RQ{\omega}^{\alpha}\left( \cos \frac{\alpha \pi}{2}+ j \sin \frac{\alpha \pi}{2}\right)}={Z}^{\prime }+ j{Z}^{{\prime\prime} } $$
(2)

so,

$$ {Z}^{\prime }=\frac{R\left(1+ RQ{\omega}^{\alpha} \cos \frac{\alpha \pi}{2}\right)\ }{1+{\left( RQ{\omega}^{\alpha}\right)}^2+2 RQ{\omega}^{\alpha} \cos \frac{\alpha \pi}{2}} $$
(3)

and

$$ {Z}^{{\prime\prime} }=\frac{-{R}^2 Q{\omega}^{\alpha} \sin \frac{\alpha \pi}{2}}{1+{\left( RQ{\omega}^{\alpha}\right)}^2+2 RQ{\omega}^{\alpha} \cos \frac{\alpha \pi}{2}}. $$
(4)

From Nyquist diagram, it can be seen that Z” presents a maximum ZC at a characteristic frequency F C . The expression of F C is obtained from the derivative dZ”/dF = 0. After some calculations, we obtain the following:

$$ {F}_{\mathrm{C}}=\frac{1}{2\pi {(RQ)}^{\frac{1}{\alpha}}}. $$
(5)

Then, it is possible to determine the expressions of ZC and ZC at this characteristic frequency F C :

$$ {Z}_{\mathrm{C}}^{\prime }=\frac{R}{2} $$
(6)
$$ {Z}_{\mathrm{C}}^{{\prime\prime} }=-\frac{R}{2} \tan \frac{\alpha \pi}{4}. $$
(7)

It can be noted that Eqs. 2, 3 and 4can be written as a function of R, α, F and F C by replacing RQω α by (F/F C)α and (RQω α)2 by (F/F C)2α.

Now, it is possible to determine the values of R, α and F C with graphical means as follows:

  • R is obtained from Z’(logF) curve such as R = R 0  − R where R 0 corresponds to the Z’ value measured at the lowest frequency and R to the highest frequency. In the same way, R can be obtained from the Nyquist diagram with the intercepts of the curve with the Z’ axis.

  • F C is obtained from the maximum Z C of the peak of Z”(logF) curve. It can also be obtained from the Nyquist diagram as F C corresponds to the frequency of the maximum Z C .

  • α is obtained from the amplitude Z C such as α \( =-\frac{4}{\pi}\ {tan}^{-1}\left(\frac{2{Z^{"}}_{\mathrm{C}}}{R}\right) \). It can also be obtained from the Nyquist diagram such as \( \alpha =\frac{\beta \left(\mathrm{rad}\right)}{\pi} \) or \( \alpha =\frac{\beta \left(\mathrm{degrees}\right)}{180} \), where β is the angle determined by the center of the semicircle and the two radius joining respectively R 0 and R on the Z’ axis. In this case the use of a compass and a protractor permits to determine α.

So, for each of the three parameters R, α and F C two values can be determined graphically by two manners. Then, for each parameter, a mean value can be calculated which also permits to deduce a mean value for the parameter Q as follows:

$$ Q=\frac{1}{R{\left(2\pi {F}_{\mathrm{C}}\right)}^{\alpha}}. $$
(8)

It is possible to introduce a capacitance C of a parallel R//C circuit which would have the same characteristic frequency F C as the R//CPE circuit, i.e.:

$$ C=\frac{1}{2\pi {RF}_{\mathrm{C}}}, $$
(9)

C is not the physical capacitance of the sample but an equivalent capacitance as the R//C circuit simulates only one time constant τ c = RC whereas in the sample at high temperature, there are a distribution of time constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumaisnil, K., Carru, JC., Fasquelle, D. et al. Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3-δ cathode with a dense interfacial layer at the electrode-electrolyte interface. Ionics 23, 2125–2132 (2017). https://doi.org/10.1007/s11581-017-2061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2061-6

Keywords

Navigation