Skip to main content
Log in

NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon black is used as conducting support for NiO nanoparticles, and noble metal particles are well dispersed on NiO/C with an average diameter of 4–8 nm. Benefiting synergistic effect, NiO/C by adding noble metal exhibits superior electrochemical activity and excellent stability for oxygen evolution reaction in water splitting. A catalyst with a weight ratio of Au to NiO of 1:2 gives the best performance. Onset potential on the Au-NiO(wt 1:2)/C electrode shifts more negatively than that on Pt-NiO(wt 1:2)/C and Pd-NiO(wt 1:2)/C, and onset potential on the Au-NiO(wt 1:2)/C electrode is lower than that on the other electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersen NI, Serov A, Atanassov P (2015) Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media. Appl Catal B-Environ 163:623–627

    Article  CAS  Google Scholar 

  2. Xiao MS, Tian YP, Yan YH, Feng K, Miao YQ (2015) Electrodeposition of Ni(OH)2/NiOOH in the presence of urea for the improved oxygen evolution. Electrochim Acta 164:196–202

    Article  CAS  Google Scholar 

  3. Lv XM, Zhu YH, Jiang HL, Yang XL, Liu YY, Su YH, Huang JF, Yao YF, Li CZ (2015) Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans 44:4148–4154

    Article  CAS  Google Scholar 

  4. Bertin A, Frangi JP (2013) Contribution to the study of the wind and solar radiation over Guadeloupe. Energy Convers Manag 75:593–602

    Article  Google Scholar 

  5. Khalilnejad A, Riahy GH (2014) A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer. Energy Convers Manag 80:398–406

    Article  CAS  Google Scholar 

  6. Raoof JB, Hosseini SR, Ojani R, Mandegarzad S (2015) MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction. Energy 90:1075–1081

    Article  CAS  Google Scholar 

  7. Oliver-Tolentino MA, Aźquez-Samperio J, Manzo-Robledo A, Gonzaĺez-Huerta RG, Flores-Moreno JL, Ramírez-Rosales D, Guzmań-Vargas A (2014) An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni−Fe LDH. J Phys Chem C 118:22432–22438

    Article  CAS  Google Scholar 

  8. Guo YW, Li Y, Li SG, Zhang L, Li Y, Wang J (2015) Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solution. Energy 82:72–79

    Article  CAS  Google Scholar 

  9. Park S, Shao Y, Liu J, Wang Y (2012) Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ Sci 5:9331–9344

    Article  CAS  Google Scholar 

  10. Shalom M, Ressnig D, Yang XF, Clavel G, Fellinger TP, Antonietti M (2015) Nickel nitride as an efficient electrocatalyst for water splitting. J Mater Chem A 3:8171–8177

    Article  CAS  Google Scholar 

  11. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    Article  CAS  Google Scholar 

  12. May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee YL, Grimaud A, Horn YS (2012) Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett 3:3264–3270

    Article  CAS  Google Scholar 

  13. Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Iha NYM, Templeton JL, Meyer TJ (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965

    Article  CAS  Google Scholar 

  14. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  15. Lyons MEG, Brandon MP (2010) A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J Electroanal Chem 641:119–130

    Article  CAS  Google Scholar 

  16. Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co−Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207

    Article  CAS  Google Scholar 

  17. Meng YT, Song WQ, Huang H, Ren Z, Chen SY, Suib SL (2014) Structure−property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464

    Article  CAS  Google Scholar 

  18. An L, Zhou PP, Yin J, Liu H, Chen FJ, Liu HY, Du YP, Xi PX (2015) Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine. Inorg Chem 54:3281–3289

    Article  CAS  Google Scholar 

  19. Balogun MS, Qiu WT, Yang H, Fan WJ, Huang YC, Fang PP, Li GR, Ji HB, Tong YX (2016) A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ Sci 9:3411–3416

    Article  CAS  Google Scholar 

  20. Liu X, Maegawa Y, Goto Y, Hara K, Inagaki S (2016a) Heterogeneous catalysis for water oxidation by an iridium complex immobilized on bipyridine-periodic mesoporous organosilica. Angew Chem Int Ed 55:7943–7947

    Article  CAS  Google Scholar 

  21. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772

    Article  CAS  Google Scholar 

  22. Hu W, Wang YQ, Hu XH, Zhou YQ, Chen SL (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22:6010–6016

    Article  CAS  Google Scholar 

  23. Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IEL, Chorkendorff I (2015) Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci 6:190–196

    Article  CAS  Google Scholar 

  24. Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IEL, Chorkendorff I (2014) Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci 5:2955–2963

    Article  Google Scholar 

  25. Esposito DV, Hunt ST, Kimmel YC, Chen JG (2012) A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J Am Chem Soc 134:3025–3033

    Article  CAS  Google Scholar 

  26. Yeo BS, Klaus SL, Ross PN, Mathies RA, Bell AT (2010) Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. ChemPhysChem 11:1854–1857

    CAS  Google Scholar 

  27. Kwon G, Ferguson GA, Heard CJ, Tyo EC, Yin C, Bartolo JD, Seifert S, Winans RE, Kropf AJ, Greeley J, Johnston RL, Curtiss LA, Pellin MJ, Vajda S (2013) Size-dependent subnanometer Pd cluster (Pd4Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7:5808–5817

    Article  CAS  Google Scholar 

  28. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  CAS  Google Scholar 

  29. Seminario JM, Agapito LA, Yan L, Balbuena PB (2005) Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with CrCo, and Ni. Chem Phys Lett 410:275–281

    Article  CAS  Google Scholar 

  30. Liu T, Guo YF, Yan YM, Wang F, Deng C, Rooney D, Sun KN (2016b) CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions. Carbon 106:84–92

    Article  CAS  Google Scholar 

  31. Jeyabharathi C, Hodnik N, Baldizzone C, Meier JC, Heggen M, Phani KLN, Bele M, Zorko M, Hocevar S, Mayrhofer KJJ (2013) Time evolution of the stability and oxygen reduction reaction activity of PtCu/C nanoparticles. ChemCatChem 5:2627–2635

    Article  CAS  Google Scholar 

  32. Esposito DV, Chen JGG, Birkmire RW, Chang YC, Gaillard N (2011) Hydrogen production from photo-driven electrolysis of biomass-derived oxygenates: a case study on methanol using Pt-modified WO3 thin film electrodes. Int J Hydrog Energy 36:9632–9644

    Article  CAS  Google Scholar 

  33. Li ZY, Shi ST, Zhong QS, Zhang CJ, Xu CW (2014) Pt-Mn3O4/C as efficient electrocatalyst for oxygen evolution reaction in water electrolysis. Electrochim Acta 146:119–124

    Article  CAS  Google Scholar 

  34. Gorlin Y, Chung CJ, Benck JD, Nordlund D, Seitz L, Weng TC, Sokaras D, Clemens BM, Jaramillo TF (2014) Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc 136:4920–4926

    Article  CAS  Google Scholar 

  35. Zhang JH, Feng JY, Zhu T, Liu ZL, Li QY, Chen SZ, Xu CW (2016) Pd-doped urchin-like MnO2-carbon sphere three-dimensional (3D) material for oxygen evolution reaction. Electrochim Acta 196:661–669

    Article  CAS  Google Scholar 

  36. Xia WY, Li N, Li QY, Ye KH, Xu CW (2016) Au-NiCo2O4 supported on threedimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci Rep 6:23398. doi:10.1038/srep23398

  37. Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:1519–1527

    Article  CAS  Google Scholar 

  38. Yuan WY, Shen PK, Jiang SP (2014) Controllable synthesis of graphene supported MnO2 nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. J Mater Chem A 2:123–129

    Article  CAS  Google Scholar 

  39. Xia DC, Zhou L, Qiao S, Zhang YL, Tang D, Liu J, Huang H, Liu Y, Kang ZH (2016b) Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater Res Bull 74:441–446

    Article  CAS  Google Scholar 

  40. Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 135:11580–11586

    Article  CAS  Google Scholar 

  41. Stern LA, Hu XL (2014) Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss 176:363–379

    Article  CAS  Google Scholar 

  42. Tao HB, Fang LW, Chen JZ, Yang HB, Gao JJ, Miao JW, Chen SL, Liu B (2016) Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J Am Chem Soc 138:9978–9985

    Article  CAS  Google Scholar 

  43. Seetharaman S, Balaji R, Ramya K, Dhathathreyan KS, Velan M (2014) Electrochemical behaviour of nickel-based electrodes for oxygen evolution reaction in alkaline water electrolysis. Ionics 20:713–720

    Article  CAS  Google Scholar 

  44. Manivasakan P, Ramasamy P, Kim J (2015) Reactive-template fabrication of porous NiO nanowires for electrocatalytic O2 evolution reaction. RSC Adv 5:33269–33274

    Article  CAS  Google Scholar 

  45. Cheng Y, Shen PK, Jiang SP (2014) NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. Int J Hydrog Energy 39:20662–20670

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Guangdong Province (2014A030313521), Scientific Research Foundation for Yangcheng Scholar (1201561607), Science and Technology Program of Guangzhou (201510010112), and the National Natural Science Foundations of China (U1401246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Wei Xu or Qing-Yu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SQ., Xia, WY., Liang, ZS. et al. NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen. Ionics 23, 2161–2166 (2017). https://doi.org/10.1007/s11581-017-2041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2041-x

Keywords

Navigation