Skip to main content
Log in

Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Research and development activities on sodium-ion batteries are becoming prominent in the past few years. Compared to lithium-based batteries, the sodium-based batteries will be cheaper because of the abundancy of sodium raw materials in the earth’s crust and also in seawater. In the current study, we synthesized and characterized poly-acrylonitrile (PAN)-based gel-polymer electrolytes formed with NaClO4 and dissolved in ethylene carbonate (EC) and propylene carbonate (PC). By systematically varying the weight ratios of polymer, salt, and the solvents, we obtained an optimum room temperature ionic conductivity of 4.5 mS cm−1 for the composition 11PAN-12NaClO4-40EC-37PC (wt.%), which is reasonably good for practical applications. This value of conductivity is comparable to a few other Na+ ion conducting gel-polymer electrolyte systems studied in the recent past. Variation of ionic conductivity with inverse temperature showed Arrhenius behavior. Activation energies estimated for all the samples showed only a slight variation suggesting that a single activation process which depends on the EC/PC co-solvent governs the ionic mobility in these gel-polymer electrolytes. Thermo-gravimetric analysis (TGA) revealed that there is no noticeable weight loss of these electrolytes up to 100 °C and hence the electrolytes are thermally stable for operating temperatures up to 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aquion manufactures safe and sustainable saltwater batteries. Retrieved on August 31, 2016 from www.aquionenergy.com

  2. The first prototype of a sodium-ion battery. Retrieved on August 31, 2016 from www.energie-rs2e.com/en

  3. Vignarooban K, Kushagra R, Elango A, Badami P, Mellander B-E, Xu X, Tucker TG, Nam C, Kannan AM (2016) Int J Hydrog Energy 41:2829–2846

    Article  CAS  Google Scholar 

  4. Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Eur Polym J 41:15–21

    Article  CAS  Google Scholar 

  5. Xu W, Angell A (2003) Electrochim Acta 48:2019–2035

    Google Scholar 

  6. Deepa M, Sharma N, Agnihotry SA, Chandra R, Sekhon SS (2002) Solid State Ionics 148:451–455

    Article  CAS  Google Scholar 

  7. Deepa M, Sharma N, Agnihotry SA, Singh S, Lal T, Chandra R (2002) Solid State Ionics 152-153:253–258

    Article  CAS  Google Scholar 

  8. Kumar D, Hashmi SA (2010) Solid State Ionics 181:416–423

    Article  CAS  Google Scholar 

  9. Kumar D, Suleman M, Hashmi SA (2011) Solid State Ionics 202:45–53

    Article  CAS  Google Scholar 

  10. Kumar D, Hashmi SA (2010) J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  11. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) Solid State Ionics 269:1–7

    Article  CAS  Google Scholar 

  12. Gao H, Guo B, Song J, Park K, Goodenough JB (2015) Adv Energy Mater 5:1402235 1-8

    Article  Google Scholar 

  13. Zhang R (2013) Advanced gel-polymer electrolytes for Lithium-Ion polymer batteries, MS thesis. Iowa State University, USA

    Google Scholar 

  14. Stephen AM (2006) Eur Polym J 42:21–42

    Article  Google Scholar 

  15. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander B-E (2014) Solid State Ionics 266:25–28

    Article  CAS  Google Scholar 

  16. Matt P, Roger F (2009) J Phys Chem B 113:5596

    Google Scholar 

  17. Matt P, Roger F (2010) Electrochim Acta 55:1285

    Article  Google Scholar 

  18. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundara WJMJSR, Mellander B-E (2013) J Appl Electrochem 43(9):891–901

    Article  CAS  Google Scholar 

  19. Li M, Wang X, Wang Y, Chen B, Wu Y, Holze R (2015) RSC Adv 5:52382–52387

    Article  CAS  Google Scholar 

  20. Song MK, Kim YT, Cho JY, Cho BW, Popov BN, Rhee HW (2004) J Power Sources 125:10–16

    Article  CAS  Google Scholar 

  21. Zhu Y, Wang F, Liu L, Xiao S, Yang Y, Wu Y (2013) Scientific Reports 3(3187):1–6

    Google Scholar 

Download references

Acknowledgement

KV acknowledges National Science Foundation (NSF), Sri Lanka, for offering an Overseas Special Training Fellowship (No. OSTP/2016/02) to visit the Arizona State University during March-April, 2016. KV and PR acknowledge National Research Council (NRC), Sri Lanka, for the financial assistance (Grant No. NRC 15-078) to the project. KV also acknowledges University Research Grant (URG-2014) obtained from the University of Jaffna, Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Vignarooban or A. M. Kannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignarooban, K., Badami, P., Dissanayake, M.A.K.L. et al. Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23, 2817–2822 (2017). https://doi.org/10.1007/s11581-017-2002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2002-4

Keywords

Navigation