Skip to main content
Log in

AC conductivity and dielectric behavior in mixed electronic-ionic 30Li2O–4MoO3–(66–x)TeO2xV2O5 glass system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

AC conductivity, dielectric property, and electric modulus formalism of lithium molybdenum tellurite glasses containing vanadium with compositions 30Li2O–4MoO3–(66–x)TeO2xV2O5 (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) have been studied in the frequency range 10−2 Hz to 1 MHz and temperature range 323–413 K to investigate the effects of mixed ionic–electronic carriers in the glasses. The variation of AC conductivity with V2O5 showed a nonlinear increase for x ≤ 0.6 mol% before decreasing to a minimum at 0.8 mol% V2O5. The decrease in σ AC attributed to some forms of blocking effect on Li+ ions caused by the mixed ionic–electronic (MIE) effect. Meanwhile, dielectric constant showed a general increase for x ≤ 0.6 before an anomalous decrease at x = 0.8 mol% V2O5, which was followed by a large increase at x > 0.8 mol%. The decrease at x = 0.8 mol% coincided with the σ AC drop at the same location. This decrease was also suggested related to the MIE that induced a blocking effect, which caused the restricted dipole movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sidkey MA, Gaafar MS (2004) Ultrasonic studies on network structure of ternary TeO2–WO3–K2O glass system. Phys B Condens Matter 348:46–55

    Article  CAS  Google Scholar 

  2. Sidkey MA, El-Mallawany R, Nakhla RI, Abd El-Moneim A (1997) Ultrasonic attenuation at low temperature of TeO2–V2O5 glasses. Phys Status Solidi A 159:397–404

    Article  CAS  Google Scholar 

  3. Cardillo EC, Montani RA, Frechero MA (2010) A weak mixed mobile ion effect in vanadium–tellurite oxide glass modified by silver and lithium cations. J Non-Cryst Solids 356:2760–2763

    Article  CAS  Google Scholar 

  4. Mohamed EA, Ahmad F, Aly KA (2012) Effect of lithium addition on thermal and optical properties of zinc–tellurite glass. J Alloys Compd 538:230–236

    Article  CAS  Google Scholar 

  5. Reddy CN, Anavekar RV (2008) Elastic properties and spectroscopic studies of Li2O–B2O3–V2O5 glasses. Mater Chem Phys 112:359–365

    Article  CAS  Google Scholar 

  6. Saddeek YB (2005) Elastic properties of Gd3+-doped tellurovanadate glasses using pulse-echo technique. Mater Chem Phys 91:146–153

    Article  CAS  Google Scholar 

  7. Desirena H, Schülzgen A, Sabet S, Ramos-Ortiz G, de la Rosa E, Peyghambarian N (2009) Effect of alkali metal oxides R2O (R = Li, Na, K, Rb and Cs) and network intermediate MO (M = Zn, Mg, Ba and Pb) in tellurite glasses. Opt Mater 31:784–789

    Article  CAS  Google Scholar 

  8. El-Deen LMS, Salhi MSA, Elkholy MM (2008) IR and UV spectral studies for rare earths-doped tellurite glasses. J Alloys Compd 465:333–339

    Article  CAS  Google Scholar 

  9. Lin J, Huang W, Sun Z, Ray CS, Day DE (2004) Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J Non-Cryst Solids 336:189–194

    Article  CAS  Google Scholar 

  10. Li J, Sun Z, Zhu X, Zeng H, Xu Z, Wang Z et al (2004) Optical bistability for ZnO–Nb2O5–TeO2 glasses. Opt Mater 25:401–405

    Article  Google Scholar 

  11. Yousef ES (2013) Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. J Alloys Compd 561:234–240

    Article  CAS  Google Scholar 

  12. Yousef ES, Al-Qaisi B (2013) UV spectroscopy, refractive indices and elastic properties of the (76 − x) TeO2-9P2O5-15ZnO-xLiNbO3 glass. Solid State Sci 19:6–11

    Article  CAS  Google Scholar 

  13. Akamine S, Nanba T, Miura Y (2005) Compositional dependence of refractive index in tellurite glasses. Ninth Biennial Worldwide Congress on Refractories, pp 1–8

  14. Souri D (2011) Effect of molybdenum tri-oxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44:717–721

    Article  Google Scholar 

  15. El-Mallawany R (2000) Structural interpretations on tellurite glasses. Mater Chem Phys 63:109–115

    Article  CAS  Google Scholar 

  16. Mott N, Davis E (1979) Electron process in non-crystalline materials. Clarendon, Oxford

    Google Scholar 

  17. Sayer M, Mansingh A (1972) Transport properties of semiconducting phosphate glasses. Phys Rev B 6:4629

    Article  CAS  Google Scholar 

  18. Mott N (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1–17

    Article  CAS  Google Scholar 

  19. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  20. Owen A (1977) The electrical properties of glasses. J Non-Cryst Solids 25:370–423

    Article  CAS  Google Scholar 

  21. Souri D (2010) Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. J Non-Cryst Solids 356:2181–2184

    Article  CAS  Google Scholar 

  22. Bih L, Abbas L, Nadiri A, Khemakhem H, Elouadi B (2008) Investigations of molybdenum redox phenomenon in Li2O–MoO3–P2O5 phosphate glasses. J Mol Struct 872:1–9

    Article  CAS  Google Scholar 

  23. Jayasinghe G, Dissanayake M, Bandaranayake P, Souquet J, Foscallo D (1999) Electronic to ionic conductivity of glasses in the Li2O–V2O5–TeO2 system. Solid State Ionics 121:19–23

    Article  CAS  Google Scholar 

  24. Garbarczyk J (2003) Electrical properties of AgI–Ag2O–V2O5–P2O5 glasses. Solid State Ionics 157:269–273

    Article  CAS  Google Scholar 

  25. Garbarczyk J, Wasiucionek M, Jóźwiak P, Tykarski L, Nowiński J (2002) Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ionics 154:367–373

    Article  Google Scholar 

  26. Ungureanu M, Lévy M, Souquet J (1998) Mixed conductivity of glasses in the P2O5-V2O5-Na2O system. Ionics 4:200–206

    Article  CAS  Google Scholar 

  27. Zhu D, Ray CS, Zhou W, Day DE (2003) Glass transition and fragility of Na2O–TeO2 glasses. J Non-Cryst Solids 319:247–256

    Article  CAS  Google Scholar 

  28. Nascimento MLF, Watanabe S (2006) Universal curve of ionic conductivities in binary alkali tellurite glasses. Braz J Phys 36:795–798

    Article  CAS  Google Scholar 

  29. Dutta D, Ghosh A (2005) Dynamics of Ag+ ions in binary tellurite glasses. Phys Rev B 72:024201

  30. Moawad HMM, Jain H, El-Mallawany R (2010) On the origin of electrical relaxation in tellurite glasses. Solid State Ionics 181:1103–1110

    Article  CAS  Google Scholar 

  31. Jayasinghe G, Dissanayake M, Careem M, Souquet J (1997) Electronic to ionic conductivity of glasses in the Na2O-V2O5-TeO2 system. Solid State Ionics 93:291–295

    Article  CAS  Google Scholar 

  32. Krins N, Rulmont A, Grandjean J, Gilbert B, Lepot L, Cloots R et al (2006) Structural and electrical properties of tellurovanadate glasses containing Li2O. Solid State Ionics 177:3147–3150

    Article  CAS  Google Scholar 

  33. Jozwiak P, Garbarczyk J (2005) Mixed electronic–ionic conductivity in the glasses of the LiO–VO–PO system. Solid State Ionics 176:2163–2166

    Article  CAS  Google Scholar 

  34. Sankarappa T, Kumar MP, Devidas GB, Nagaraja N, Ramakrishnareddy R (2008) AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses. J Mol Struct 889:308–315

    Article  CAS  Google Scholar 

  35. Rao LS, Reddy MS, Reddy MR, Veeraiah N (2008) Dielectric dispersion in Li2O–MoO3–B2O3 glass system doped with V2O5. J Alloys Compd 464:472–482

    Article  CAS  Google Scholar 

  36. Doweidar H, Saddeek YB (2010) Effect of La2O3 on the structure of lead borate glasses. J Non-Cryst Solids 356:1452–1457

    Article  CAS  Google Scholar 

  37. Yahia IS, Saddeek YB, Sakr GB, Knoff W, Story T, Romčević N et al (2009) Spectroscopic analysis and magnetic susceptibility of CuO–TeO2–V2O5 glasses. J Magn Magn Mater 321:4039–4044

    Article  CAS  Google Scholar 

  38. Saddeek YB, Gaafar M, Bashier SA (2010) Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system. J Non-Cryst Solids 356:1089–1095

    Article  CAS  Google Scholar 

  39. Terny CS, Cardillo EC, diPrátula PE, Villar MA, Frechero MA (2014) Electrical response of bivalent modifier cations into a vanadium–tellurite glassy matrix. J Non-Cryst Solids 387:107–111

    Article  CAS  Google Scholar 

  40. Azianty S, Yahya AK, Halimah MK (2012) Effects of Fe2O3 replacement of ZnO on elastic and structural properties of 80TeO2–(20 − x)ZnO–xFe2O3 tellurite glass system. J Non-Cryst Solids 358:1562–1568

    Article  CAS  Google Scholar 

  41. Zarifah N, Halimah M, Hashim M, Azmi B, Daud W (2010) Magnetic behaviour of (Fe2O3) x (TeO2)1−x glass system due to iron oxide. Chalcogenide Letters 7:565–571

    CAS  Google Scholar 

  42. Rada S, Chelcea R, Culea E (2011) Experimental and theoretical investigations on the structure-properties interrelationship of the gadolinium-vanadate-germanate glasses. J Mol Model 17:165–171

    Article  CAS  Google Scholar 

  43. Rada S, Dehelean A, Stan M, Chelcea R, Culea E (2011) Structural studies on iron–tellurite glasses prepared by sol–gel method. J Alloys Compd 509:147–151

    Article  CAS  Google Scholar 

  44. Iordanova R, Aleksandrov L, Bachvarova-Nedelcheva A, AtaaLa M, Dimitriev Y (2011) Glass formation and structure of glasses in B2O3―Bi2O3―MoO3 system. J Non-Cryst Solids 357:2663–2668

    Article  CAS  Google Scholar 

  45. Frechero MA, Quinzani OV, Pettigrosso RS, Villar M, Montani RA (2007) IR absorption spectra of lithium and silver vanadium–tellurite based glasses. J Non-Cryst Solids 353:2919–2925

    Article  CAS  Google Scholar 

  46. Saddeek Y, Yahia I, Dobrowolski W, Kilanski L, Romčević N, Arciszewska M (2009) Infrared, Raman spectroscopy and ac magnetic susceptibility of Gd2O3-TeO2-V2O5 glasses. Optoelectronics and Advanced Materials-Rapid Communications 3:559–564

    CAS  Google Scholar 

  47. Dimitriev Y, Dimitrov V, Arnaudov M, Topalov D (1983) IR-spectral study of vanadate vitreous systems. J Non-Cryst Solids 57:147–156

    Article  CAS  Google Scholar 

  48. Elliott S (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  CAS  Google Scholar 

  49. Mahani RM, Marzouk SY (2013) AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses. J Alloys Compd 579:394–400

    Article  CAS  Google Scholar 

  50. Rao RB, Gopal NO, Veeraiah N (2004) Studies on the influence of V2O5 on dielectric relaxation and ac conduction phenomena of Li2O–MgO–B2O3 glass system. J Alloys Compd 368:25–37

    Article  CAS  Google Scholar 

  51. Rani S, Sanghi S, Ahlawat N, Agarwal A (2015) Influence of Bi2O3 on physical, electrical and thermal properties of Li2O-ZnO-Bi2O3-SiO2 glasses. J Alloys Compd 619:659–666

    Article  CAS  Google Scholar 

  52. Kohlrausch R (1847) Nachtrag uber die elastiche Nachwirkung beim Cocon und Glasladen. Ann Phys(Leipzig) 72:393

    Google Scholar 

  53. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  54. Pant M, Kanchan DK, Gondaliya N (2009) Transport properties and relaxation studies in BaO substituted Ag2O–V2O5–TeO2 glass system. Mater Chem Phys 115:98–104

    Article  CAS  Google Scholar 

  55. Kjeldsen J, Rodrigues AC, Mossin S, Yue Y (2014) Critical V2O5/TeO2 ratio inducing abrupt property changes in vanadium tellurite glasses. J Phys Chem B 118:14942–14948

    CAS  Google Scholar 

  56. Kjeldsen J, Yue Y, Bragatto CB, Rodrigues ACM (2013) Electronic conductivity of vanadium-tellurite glass-ceramics. J Non-Cryst Solids 378:196–200

    Article  CAS  Google Scholar 

  57. Sindhu S, Sanghi S, Rani S, Agarwal A, Seth V (2008) Modification of structure and electrical conductivity of cadmium borate glasses in the presence of V2O5. Mater Chem Phys 107:236–243

    Article  CAS  Google Scholar 

  58. Hoppe U, Yousef E, Russel C, Neuefeind J, Hannon AC (2002) Structure of vanadium tellurite glasses studied by neutron and X-ray diffraction. Solid State Commun 123:273–278

    Article  CAS  Google Scholar 

  59. Pollak M, Geballe T (1961) Low-frequency conductivity due to hopping processes in silicon. Phys Rev 122:1742

    Article  CAS  Google Scholar 

  60. Chakraborty S, Sadhukhan M, Chaudhuri B, Mori H, Sakata H (1997) Frequency dependent electrical conductivity and dielectric relaxation behavior in amorphous (90V2O5–10Bi2O3) oxide semiconductors doped with SrTiO3. Mater Chem Phys 50:219–226

    Article  CAS  Google Scholar 

  61. Kumar MP, Sankarappa T, Kumar S (2008) AC conductivity studies in rare earth ions doped vanadotellurite glasses. J Alloys Compd 464:393–398

    Article  CAS  Google Scholar 

  62. Shaaban MH (2012) Dielectric properties and scaling behavior of lithium tungsten phosphate glasses. J Electroceram 28:246–255

    Article  CAS  Google Scholar 

  63. Goswami M, Deshpande SK, Kumar R, Kothiyal GP (2010) Electrical behaviour of Li2O–ZnO–SiO2 glass and glass-ceramics system. J Phys Chem Solids 71:739–744

    Article  CAS  Google Scholar 

  64. Elkholy M, El-Deen LS (2000) The dielectric properties of TeO2–P2O5 glasses. Mater Chem Phys 65:192–196

    Article  CAS  Google Scholar 

  65. Ahlawat N, Sanghi S, Agarwal A, Kishore N, Rani S (2008) Investigation of near constant loss contribution to conductivity in lithium bismo-silicate glasses. J Non-Cryst Solids 354:3767–3772

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The project was financially supported by the Ministry of Higher Eduction of Malaysia and Research Management Centre (RMC), Universiti Teknologi Mara through the RAGS grant (No. RMI 600-RMI/RAGS 5/3 (141/2014)). The authors would like to express their gratitude to the Universiti Teknologi Mara and the Ministry of Higher Eduction of Malaysia for the SLAI scholarship given to Rosdiyana Hisam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Kamal Yahya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisam, R., Yahya, A.K., Mohamed Kamari, H. et al. AC conductivity and dielectric behavior in mixed electronic-ionic 30Li2O–4MoO3–(66–x)TeO2xV2O5 glass system. Ionics 23, 1423–1437 (2017). https://doi.org/10.1007/s11581-017-1973-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1973-5

Keywords

Navigation