Skip to main content
Log in

Advanced LiTi2(PO4)3/C anode by incorporation of carbon nanotubes for aqueous lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g−1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g−1), much larger than that of the LTP/C composite (53.4 mAh g−1 at 10 C, and 31.7 mAh g−1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li LY, Kim S, Wang W, Vijayakumar M, Nie ZM, Chen BW, Zhang JL, Xia GG, Hu JZ, Graff G, Liu J, Yang ZG (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394

    Article  CAS  Google Scholar 

  2. He Z, Liu L, Gao C, Zhou Z, Liang X, Lei Y, He Z, Liu S (2013) Carbon nanofibers grown on the surface of graphite felt by chemical vapour deposition for vanadium redox flow batteries. RSC Adv 3:19774

    Article  CAS  Google Scholar 

  3. He Z, Shi L, Shen J, He Z, Liu S (2015) Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries. Int J Energy Res 39:709

    Article  CAS  Google Scholar 

  4. Shi M, Kong L-B, Liu J-B, Yan K, Li J-J, Dai Y-H, Luo Y-C, Kang L (2016) A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics 22:185

    Article  CAS  Google Scholar 

  5. Zhu X, The Nam Long, Yu D, Tian Y, Sun Y, Zhao KEK, Chen HP (2016) Enhancing rate performance of LiMn2O4 cathode in rechargeable hybrid aqueous battery by hierarchical carbon nanotube/acetylene black conductive pathways. Ionics 22:71

    Article  CAS  Google Scholar 

  6. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: A review. J Power Sources 274:237

    Article  CAS  Google Scholar 

  7. Jin G, Qiao H, Xie H, Wang H, He K, Liu P, Chen J, Tang Y, Liu S, Huang C (2014) Synthesis of singlecrystalline octahedral LiMn2O4 as high performance cathode for Li-ion battery. Electrochim Acta 150:1

    Article  CAS  Google Scholar 

  8. Sun D, Jin G, Wang H, Huang X, Ren Y, Jiang J, He H, Tang Y (2014) LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries. J Mater Chem A 2:8009

    Article  CAS  Google Scholar 

  9. He Z, Liu J, Han H, Chen Y, Zhou Z, Zheng S, Lu W, Liu S, He Z (2013) Effects of organic additives containing -NH2 and -SO3H on electrochemical properties of vanadium redox flow battery. lectrochim Acta 106:556

    Article  CAS  Google Scholar 

  10. Tang W, Zhu YS, Hou YY, Liu LL, Wu YP, Loh KP, Zhang HP, Zhu K (2013) Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ Sci 6:2093

    Article  CAS  Google Scholar 

  11. Xiu Z, Alfaruqi MH, Gim J, Song J, Kim S, Duong PT, Baboo JP, Mathew V, Kim J (2016) MOF-derived mesoporous anatase TiO2 as anode material for lithium–ion batteries with high rate capability and long cycle stability. J Alloys Compd 674:174

    Article  CAS  Google Scholar 

  12. Li Z, Li J, Zhao Y, Yang K, Gao F, Li X (2016) Influence of cooling mode on the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Ionics 22:789

    Article  Google Scholar 

  13. Sun D, Xue X, Tang Y, Jing Y, Huang B, Ren Y, Yao Y, Wang H, Cao G (2015) High-rate LiTi2(PO4)3@NC composite via bi-nitrogen sources doping. ACS Appl Mater Inter 7:28337

    Article  CAS  Google Scholar 

  14. Sun D, Tang Y, He K, Ren Y, Liu S, Wang H (2015) Long-lived aqueous rechargeable lithium batteries using mesoporous LiTi2(PO4)3@C anode. Sci Rep 5:17452

    Article  CAS  Google Scholar 

  15. Beck F, Rüetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45:2467

    Article  CAS  Google Scholar 

  16. Li W, McKinnon WR, Dahn JR (1994) Lithium intercalation from aqueous solutions. J Electrochem Soc 141:2310

    Article  CAS  Google Scholar 

  17. Qu QT, Fu LJ, Zhan XY, Samuelis D, Maier J, Li L, Tian S, Li ZH, Wu YP (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985

    Article  CAS  Google Scholar 

  18. Hou Y, Wang X, Zhu Y, Hu C, Chang Z, Wu Y, Holze R (2013) Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. J Mater Chem A 1:14713

    Article  CAS  Google Scholar 

  19. Luo J-Y, Cui W-J, He P, Xia Y-Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760

    Article  Google Scholar 

  20. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2012) Electrochemical characterization of LiTi2(PO4)3 as anode material for aqueous rechargeable lithium batteries. J Electrochem Soc 159:A1074

    Article  CAS  Google Scholar 

  21. Zhou D, Liu S, Wang H, Yan G (2013) Na2V6O16•0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance. J Power Sources 227:111

    Article  CAS  Google Scholar 

  22. Sun D, Jin G, Wang H, Liu P, Ren Y, Jiang Y, Tang Y, Huang X (2014) Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high performance anodes. J Mater Chem A 2:12999

    Article  CAS  Google Scholar 

  23. Wang Y, Yi J, Xia Y (2012) Recent progress in aqueous lithium-ion batteries. Adv Energy Mater 2:830

    Article  CAS  Google Scholar 

  24. Sun D, Jiang Y, Wang H, Yao Y, Xu G, He K, Liu S, Tang Y, Liu Y, Huang X (2015) Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode. Sci Rep 5:10733

    Article  CAS  Google Scholar 

  25. Cui Y, Hao Y, Bao W, Shi Y, Zhuang Q, Qiang Y (2013) Synthesis and electrochemical behavior of LiTi2(PO4)3 as anode materials for aqueous rechargeable lithium batteries. J Electrochem Soc 160:A53

    Article  CAS  Google Scholar 

  26. Huang Z, Liu L, Zhou Q, Tan J, Yan Z, Xia D, Shu H, Yang X, Wang X (2015) Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance. J Power Sources 294:650

    Article  CAS  Google Scholar 

  27. Arun N, Aravindan V, Ling WC, Madhavi S (2014) Carbon coated LiTi2(PO4)3 as new insertion anode for aqueous Na-ion batteries. J Alloys Compd 603:48

    Article  CAS  Google Scholar 

  28. Nuspl G, Takeuchi T, Weiss A, Kageyama H, Yoshizawa K, Yamabe T (1999) Lithium ion migration pathways in LiTi2(PO4)3 and related materials. J Appl Phys 86:5484

    Article  CAS  Google Scholar 

  29. Shen L, Zhang X, Uchaker E, Yuan C, Cao G (2012) Mesoporous carbon: Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv Energy Mater 2:699

    Article  Google Scholar 

  30. Tang M, Yuan A, Xu J (2015) Synthesis of highly crystalline LiMn2O4/multiwalled carbon nanotube composite material with high performance as lithium-ion battery cathode via an improved two-step approach. Electrochim Acta 166:244

    Article  CAS  Google Scholar 

  31. Zhu HQ, Zhang YM, Yue L, Li WS, Li GL, Shu D, Chen HY (2008) Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery. J Power Sources 184:637

    Article  CAS  Google Scholar 

  32. Song QS, Aravindaraj GK, Sultana H, Chan SLI (2007) Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries. Electrochim Acta 53:1890

    Article  CAS  Google Scholar 

  33. Wang H, Huang K, Ren Y, Huang X, Liu S, Wang W (2011) NH4V3O8/carbon nanotubes composite cathode material with high capacity and good rate capability. J Power Sources 196:9786

    Article  CAS  Google Scholar 

  34. Huang X, Li X, Wang H, Pan Z, Qu M, Yu Z (2010) Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55:7362

    Article  CAS  Google Scholar 

  35. Li M, Ma KY, Cheng JP, Lv D, Zhang XB (2015) Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J Power Sources 286:438

    Article  CAS  Google Scholar 

  36. Zhang Z, Yang X, Fu Y, Du K (2015) Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J Power Sources 296:2

    Article  CAS  Google Scholar 

  37. Liu Y, Wang C, Yang H, Shi Z-J, Huang F-Q (2015) Uniform-loaded SnS2/single-walled carbon nanotubes hybrid with improved electrochemical performance for lithium ion battery. Mater Lett 159:329

    Article  CAS  Google Scholar 

  38. Guoping W, Qingtang Z, Zuolong Y, MeiZheng Q (2008) The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ionics 179:263

    Article  Google Scholar 

  39. Chen Z-y, Zhu H-l, Zhu W, Zhang J-l, Li Q-f (2010) Electrochemical performance of carbon nanotubemodified LiFePO4 cathodes for Li-ion batteries. Trans Nonferrous Met Soc China 20:614

    Article  CAS  Google Scholar 

  40. Luo J-Y, Xia Y-Y (2007) Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv Funct Mater 17:3877

    Article  CAS  Google Scholar 

  41. Yan L, Xu Y, Zhou M, Chen G, Deng S, Smirnov S, Luo H, Zou G (2015) Porous TiO2 conformal coating on carbon nanotubes as energy storage materials. Electrochim Acta 169:73

    Article  CAS  Google Scholar 

  42. Wenelska K, Neef C, Schlestein L, Klingeler R, Kalenczuk RJ, Mijowska E (2015) Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries. Chem Phys Lett 635:185

    Article  CAS  Google Scholar 

  43. Sun D, Xu G, Wang H, Zeng X, Ma Y, Tang Y, Liu Y, Pan Y (2015) Multi-layered Al2O3/LixV2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochim Acta 157:211

    Article  CAS  Google Scholar 

  44. Nien Y-H, Carey JR, Chen J-S (2009) Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J Power Sources 193:822

    Article  CAS  Google Scholar 

  45. Zhang Z, Liu X, Wang L, Wu Y, Zhao H, Chen B, Xiong W (2015) Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochim Acta 168:8

    Article  CAS  Google Scholar 

  46. Abbas SM, Hussain ST, Ali S, Ahmad N, Ali N, Munawar KS (2013) Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim Acta 105:481

    Article  CAS  Google Scholar 

  47. Wang H, Wang W, Ren Y, Huang K, Liu S (2012) A new cathode material Na2V6O16•H2O nanowire for lithium ion battery. J Power Sources 199:263

    Article  CAS  Google Scholar 

  48. He H, Jin G, Wang H, Huang X, Chen Z, Sun D, Tang Y (2014) Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries. J Mater Chem A 2:3563

    Article  CAS  Google Scholar 

  49. Li L-m, Guo H-j, Li X-h, Wang Z-x, Peng W-j, Xiang K-x, Cao X (2009) Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J Power Sources 189:45

    Article  CAS  Google Scholar 

  50. Huang X, Chen H, Zhou S, Chen Y, Yang J, Ren Y, Wang H, Qu M, Pan Z, Yu Z (2012) Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochim Acta 60:239

    Article  CAS  Google Scholar 

  51. Shenouda AY, Liu HK (2008) Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J Power Sources 185:1386

    Article  CAS  Google Scholar 

  52. Li J, Suzuki T, Naga K, Ohzawa Y, Nakajima T (2007) Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries. Mater Sci Eng B 142:86

  53. Shenouda AY, Murali KR (2008) Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J Power Sources 176:332

  54. Zhu Q, Zheng S, Lu X, Wan Y, Chen Q, Yang J, Zhang L-Z, Lu Z (2016) Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J Alloys Compd 654:384

  55. Wang H, Huang K, Huang C, Liu S, Ren Y, Huang X (2011) (NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J Power Sources 196:5645

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21301193), Youth Foundation of Education Department of Hebei Province (No. QN2016183), and the Natural Science Foundation of Fujian Province (No. 2015J01072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Dai or Haiyan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Jiang, Y., Sun, D. et al. Advanced LiTi2(PO4)3/C anode by incorporation of carbon nanotubes for aqueous lithium-ion batteries. Ionics 23, 575–583 (2017). https://doi.org/10.1007/s11581-016-1828-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1828-5

Keywords

Navigation