Skip to main content
Log in

Influence of sol-gel precursors on the electrochemical performance of NaMn0.33Ni0.33Co0.33O2 positive electrode for sodium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Among the various cathode materials explored for sodium-ion batteries (SIBs), NaMn0.33Ni0.33Co0.33O2, with a layered oxide structure, is a promising material due to its high theoretical capacity (240 mAhg−1). We have synthesized NaMn0.33Ni0.33Co0.33O2 using two different types of precursors, namely metal acetates and metal nitrates by the sol-gel method. XRD patterns confirm the formation of a stable phase of the material at 900 °C. Coupled TGA-FTIR analysis was used to optimize the calcination conditions and to understand the hydrolysis and condensation mechanism of the sol-gel precursors. FTIR spectra extracted at different temperatures reveal the polymer network-forming tendency of the acetate ligands whereas the polymerization is inhibited in the nitrate precursors. SEM analysis shows spherical and platelet morphologies of samples synthesized from nitrate and acetate precursors, respectively. Using in situ impedance and galvanostatic charge/discharge studies, we observed that the precursors used to synthesize the cathode material influence the electrochemical properties of the material, as in this case, where we observe a 20 % improvement in terms of capacity by using acetate precursors instead of nitrate precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tarascon J-M, Armand M (2001) Nature 414:359

  2. Ellis BL, Nazar LF (2012) Curr Opinion Solid State Mater Sci 16(4):168–177

    Article  CAS  Google Scholar 

  3. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries, vol 1. Springer, New York, pp 1–2

  4. Dell RM, Rand DAJ (2001) Understanding batteries. Royal Society of Chemistry, Cambridge, pp 1–27

  5. Whittingham MS (2004) Chemical reviews. 104(10):4271–4302

  6. Slater MD, Kim D, Lee E, Johnson CS (2013) Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  7. U.S. Geological Survey, Mineral Commodity Summaries 2015 (2015) p 149. http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf. Accessed 17 May 2016

  8. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Ma X, Kim S, Ceder G (2011) Energy Environ Sci 4(9):3680–3688

    Article  CAS  Google Scholar 

  9. Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S (2014) J Mater Chem A 2:13415–13421

    Article  CAS  Google Scholar 

  10. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Energy Environ Sci 5(3):5884–5901

    Article  CAS  Google Scholar 

  11. Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) J Mater Chem A 3:9353–9378

    Article  CAS  Google Scholar 

  12. Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O, Takano M, Kanno R (1994) Mater Res Bull 29(6):659–666

    Article  CAS  Google Scholar 

  13. Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P (1981) Solid State Ionics 3-4(C):165–169

    Article  CAS  Google Scholar 

  14. Ma X, Chen H, Ceder G (2011) J Electrochem Soc 158(12):A1307–A1312

    Article  CAS  Google Scholar 

  15. Berthelot R, Carlier D, Delmas C (2011) Nat Mater 10(1):74–80

    Article  CAS  Google Scholar 

  16. Vassilaras P, Ma X, Li X, Ceder G (2013) J Electrochem Soc 160(2):A207–A211

    Article  CAS  Google Scholar 

  17. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Solid State Ionics 92(1):1–10

    Article  CAS  Google Scholar 

  18. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14(3):271–279

    Article  CAS  Google Scholar 

  19. Yang D, Liao XZ, Shen J, He YS, Ma ZF (2014) J Mater Chem A 2(19):6723–6726

    Article  CAS  Google Scholar 

  20. Zhu H, Lee KT, Hitz GT, Han X, Li Y, Wan J, Lacey S, Cresce A, Xu K, Wachsman E, Hu L (2014) ACS Appl Mater Interfaces 6(6):4242–4247

    Article  CAS  Google Scholar 

  21. Ohzuku T, Makimura Y (2001) Chem Lett 30:642

    Article  Google Scholar 

  22. Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T (2004) J Electrochem Soc 151(10):A1545–A1551

    Article  CAS  Google Scholar 

  23. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y (2012) Komaba, S. Nat Mater 11(6):512–517

    Article  CAS  Google Scholar 

  24. Lu Z, Dahn JR (2011) J Electrochem Soc 148(11):A1225–A1229

    Article  Google Scholar 

  25. Komaba S, Nakayama T, Ogata A, Shimizu T, Takei C, Takada S, Hokura A, Nakai I (2009) ECS Trans 16(42):43–55

    Article  CAS  Google Scholar 

  26. Kundu D, Talaie E, Duffort V, Nazar LF (2015) Angew Chem Int Ed 54(11):3431–3448

    Article  CAS  Google Scholar 

  27. Kawabe Y, Yabuuchi N, Kajiyama M, Fukuhara N, Inamasu T, Okuyama R, Nakai I, Komaba S (2011) Electrochem Commun 13(11):1225–1228

    Article  CAS  Google Scholar 

  28. Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid-State Lett 4(12):A200–A203

    Article  CAS  Google Scholar 

  29. Rangasamy VS, Thayumanasundaram S, Seo JW, Locquet JP (2015) Spectrochim Acta A Mol Biomol Spectrosc 138:693–699

    Article  CAS  Google Scholar 

  30. Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet JP (2014) Ionics 20(7):935–941

    Article  CAS  Google Scholar 

  31. Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  32. Sathiya M, Hemalatha K, Ramesha K, Tarascon JM, Prakash AS (2012) Chem Mater 24:1846–1853

    Article  CAS  Google Scholar 

  33. Delmas C, Fouassier C, Hagenmuller P (1980) Physica B+ C 99(1):81–85

    Article  CAS  Google Scholar 

  34. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, San Diego, CA, pp 52–58

  35. Kaliyappan K, Liu J, Lushington A, Li R, Sun X (2015) ChemSusChem 8(15):2537–2543

    Article  CAS  Google Scholar 

  36. Bhide A, Hofmann J, Dürr AK, Janek J, Adelhelm P (2014) Phys Chem Chem Phys 16(5):1987–1998

    Article  CAS  Google Scholar 

  37. Thomas MGSR, Bruce PG, Goodenough JB (1985) J Electrochem Soc 132(7):1521–1528

    Article  CAS  Google Scholar 

  38. Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment, and applications, Second Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA

  39. Aurbach D (2000) J Power Sources 89(2):206–218

    Article  CAS  Google Scholar 

  40. Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S (2014) Chem Commun 50:3677–3680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the KU Leuven for supporting via the CREA grant for the “SoFUN” project (CREA-14/012) and the KU Leuven Industrial Research Fund for the project “Better Batteries” (IOF-KP/14/005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Shankar Rangasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangasamy, V.S., Thayumanasundaram, S., Locquet, JP. et al. Influence of sol-gel precursors on the electrochemical performance of NaMn0.33Ni0.33Co0.33O2 positive electrode for sodium-ion battery. Ionics 23, 645–653 (2017). https://doi.org/10.1007/s11581-016-1824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1824-9

Keywords

Navigation