Skip to main content
Log in

Dielectric and AC conductivity studies in Li2O-CoO-B2O3-TeO2 glasses

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

CoO and Li2O mixed with borotellurite glasses in the compositions, (B2O3)0.2-(TeO2)0.3-(CoO) x -(Li2O)0.5−x, where x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 were synthesized by fast cooling the melt to room temperature. Absence of crystalline phases in the samples was confirmed by X-ray diffraction studies. Changes in dielectric properties with frequency and temperature over wide ranges have been measured. Dielectric constant and loss increased with increase in CoO content. AC conductivity has been analyzed using Mott’s small polaron model and activation energy was determined. Activation energy decreased and conductivity increased with increase in CoO content up to 0.3 mole fractions, and they behaved oppositely for higher concentration of CoO. This observed change of trend in activation energy and conductivity at 0.3 mole fraction of CoO ascribed to switch over of conduction mechanism occurring from predominantly ionic to electronic regime. For the first time, a transition of conduction mechanism is observed in borotellurite glasses. Temperature and composition independent relaxation mechanism in these glasses has been confirmed by plotting the scaled conductivity master curves. Hunt’s model has been invoked to understand the frequency dispersion of conductivity.

Plots of ln(ε′′) versus ln(F) for BTCL2 glass at different temperatures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang JS, Vogal EM, Slintzer E (1994) Tellurite glasses: a new candidate for fiber devices. Opt Mater 3:187–203

    Article  CAS  Google Scholar 

  2. Tanaka K, Yoko T, Nakano M, Nakamura M, Kamiya K (1990) Electronic conduction in Fe2O3-TeO2-P2O5 glasses: an explication for high conductivity of iron-containing tellurite glasses. J Non-Cryst Solids 125:264–271

    Article  CAS  Google Scholar 

  3. Durga DK, Veeraiah N (2003) Role of manganese ions on the stability of ZnF2-P2O5-TeO2 glass system by the study of dielectric dispersion and some other physical properties. J Phys & Chem Solids 64(1):133–146

    Article  CAS  Google Scholar 

  4. Sadeek YB (2009) Effect of B2O3 on the structure and properties of tungsten-tellurite glasses. Phil Mag 89(1):41–54

    Article  Google Scholar 

  5. Khaled MA, Elzahed H, Fayek SA, El-Ocker MM (1994) Optical absorption, infrared and differential thermal analysis studies of borotellurite glass containing nickel. Mater Chem Phys 37(4):329–332

  6. Sankarappa T, Prashant Kumar M, Devidas GB, Nagaraja N, Ramakrishna Reddy R (2008) AC conductivity and dielectric studies in V2O5-TeO2 and V2O5-CoO-TeO2 glasses. J Mol Struct 889(1-3):308–315

    Article  CAS  Google Scholar 

  7. Shaw A, Ghosh A (2014) Dynamics of lithium ions in borotellurite mixed former glasses: correlation between the characteristic length scales of mobile ions and glass network structural units. J Chem Phys 141:164504

    Article  CAS  Google Scholar 

  8. Sakata H, Sega K (1999) Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses. Phys Rev B 60(5):3230–3236

  9. Annamalai S, Bhatta RP, Pegg IL, Dutta B (2012) Mixed transition-ion effect in the glass system: Fe2O3-MnO-TeO2. J Non-Cryst Solids 358(11):1380–1386

    Article  CAS  Google Scholar 

  10. Burger B, Kneipp K, Hobert H (1992) Glass formation, properties and structure of glasses in the TeO2-ZnO system. J Non-Cryst Solids 151(1-2):134–142

    Article  Google Scholar 

  11. Aly KA, Saddeek YB, Dahshan A (2010) Effect of WO3 on the glass transition and crystallization kinetics of borotellurite glasses. Philos Mag 90(33):4429–4441

    Article  CAS  Google Scholar 

  12. Bhat MH, Ganguli M, Rao KJ (2004) Investigation of mixed alkali effect in boro-tellurite glasses-the role of NBO-BO switching in ion transport. Curr Sci 86(5):676–691

  13. Ramesh Kumar E, Rajanikumari K, Appa Rao B, Bhikshamaiah G (2014) DC and AC conductivity studies in silver FIC glasses. Int J Innovative Res in Sci, Eng and Tech 3(4):11271–11277

    Google Scholar 

  14. Mahraz ZAS, Sahar MR, Ghoshal SK (2014) Improved chemical durability and thermal stability of zinc borotellurite glasses. Chalcogenide Letters 11(9):453–460

    Google Scholar 

  15. Abdel-Wahab FA, Youssef GM, Abdallah A (2014) Electrical conduction and dielectric properties of Bi2O3-B2O3-TeO2 glass. J Mater Sci 49:720–728

  16. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1(1):1–17

    Article  CAS  Google Scholar 

  17. Austin IG, Mott NF (1969) Polaron in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  18. Ghosh A (1993) Complex ac conductivity of tellurium cuprate glassy semiconductors. Phys Rev B 47(23):15537–15542

  19. Hunt A (1991) A percolation treatment of the AC hopping conductivity at low frequencies and dimensionalities. J Non-Cryst Solids 134(3):287–292

    Article  Google Scholar 

  20. Bhagat AA, Abou-Zeid YM (2001) Mixed alkali effect in the K2O-Na2O-TeO2 glass system. Phys Chem Glasses 42(6):361–370

    Google Scholar 

  21. Naresh P, Naga Raju G, Gandhi Y, Piasecki M, Veeraiah N (2015) Insulating and other physical properties of CoO-doped zinc oxyfluoride-borate glass-ceramics. J Am Ceram Soc 98(2):413–422

    Article  CAS  Google Scholar 

  22. Srinivasa Rao YN, Srinivasa Rao L, Srinivasa Rao CH, Raghavaiah BV, Ravikumar V, Brick MG, Veeraiah N (2012) Influence of valence states and co-ordination of cobalt ions on dielectric properties of PbO-Bi2O3-As2O3:CoO glass system. Physica B 407(4):581–588

    Article  CAS  Google Scholar 

  23. El Mkami H, Deroide B, Backov R, Vzanchetta J (2000) DC and AC conductivities of (V2O5)x(B2O3)1-x oxide glasses. J Phys Chem Solids 61(5):819–826

  24. Montani RA, Lorente A, Vincenzo MA (2001) Effect of Ag2O on the conductive behavior of silver vanadium tellurite glasses. Solid State Ionics 130(1-2):91–95

  25. Jayasinghe GDLK, Dissanayake MAKI, Careem MA, Souquet JL (1997) Electronic to ionic conductivity of glasses in the Na2O-V2O5-TeO2 system. Solid State Ionics 93(3-4):291–295

    Article  CAS  Google Scholar 

  26. Devidas GB, Sankarappa T, Chougule BK, Prasad G (2007) DC conductivity in single and mixed alkali vanadophosphate glasses. J Non-Cryst Solids 353(4):426–434

    Article  CAS  Google Scholar 

  27. Eraiah B, Anavekar RV (2001) DC electronic conductivity studies on zinc vanadophosphate glasses. Phys Chem Glasses 42(1):121–125

    CAS  Google Scholar 

  28. Montani RA, Giusia SE (2001) Mixed conduction of lithium vanadium tellurite glasses. Phys Chem Glasses 42(1):12–16

  29. Raistrick ID, Macdonald JR, Franceschetti DR (1987) Impedance spectroscopy Emphasizing solid materials and systems, Wiley (Ed.), 27–112

  30. Cutroni M, Mandanici A, Piccolo A (1996) Frequency and temperature dependence of AC conductivity of vitreous silver phosphate electrolytes. Solid State Ionics 90(1-4):167–172

    Article  CAS  Google Scholar 

  31. Vijaya Kumar B, Sankarappa T, Prashant Kumar M, Sadashivaiah PJ, Ramakrishan Reddy R (2009) Dielectric properties and conductivity in CuO and MoO3 doped borophosphate glasses. Physica B 404(20):3487–3792

    Article  CAS  Google Scholar 

  32. Salman F, Khabl R, Hazaa H (2016) Impedance measurements of some silver ferro-phosphate glasses. Adv Mater Lett 7(7):593–598

    Article  CAS  Google Scholar 

  33. Roling B, Happe A, Funke K, Ingram MD (1997) Carrier concentration and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys Rev Lett 78(11):2160–2163

    Article  CAS  Google Scholar 

  34. Sumerfield S (1985) Universal low-frequency behavior in the AC hopping conductivity of disordered systems. Philos Mag B 52(1):9–22

  35. Money BK, Hariharn K (2008) Glass formation and electrical conductivity studies of melt quenched and mechanically milled 50Li2O:(50-x)P2O5:xB2O3. Solid State Ionics 179(27-32):1273–1277

    Article  CAS  Google Scholar 

  36. Ashwajeet JS, Sankarappa T, Ramanna R, Praveenkumar K (2015) Dielectric studies in Li2O and CoO doped borophosphate glasses. J Adv Phys 8(3):2256–2266

    Google Scholar 

  37. Murawski L, Barczynski RJ (1995) Dielectric properties of transition metal oxide glasses. J Non-Cryst Solids 185(1-2):84–93

  38. Bhattachrya S, Ghosh A (2003) AC relaxation in silver vanadate glasses. Phys Rev B 68:224202–224205

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial assistance received from the Department of Science and Technology (DST), Government of India, and New Delhi in the form of a Major Research Project sanctioned to Prof. T. Sankarappa, principal investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sankarappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwajeet, J.S., Sankarappa, T. Dielectric and AC conductivity studies in Li2O-CoO-B2O3-TeO2 glasses. Ionics 23, 627–636 (2017). https://doi.org/10.1007/s11581-016-1819-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1819-6

Keywords

Navigation