Skip to main content
Log in

Comparative study for voltammetric investigation and trace determination of pramipexole at bare and carbon nanotube-modified glassy carbon electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A sensitive, simple, and reproducible method was developed in this study for the determination of pramipexole, and in doing that, a glassy carbon electrode modified with –COOH-functionalized multi-walled carbon nanotube was utilized. The modified electrode was compared with a bare glassy carbon electrode in order to prove the sensitivity of the developed sensor. Cyclic, differential pulse, and adsorptive stripping differential pulse voltammetric techniques were used to investigate the oxidation behavior and stripping techniques were used for the determination of pramipexole. Based on optimum experimental conditions, calibration and partial validation studies were realized for bare and modified electrodes. As a result, the values of limit of detection and quantification were determined as be 2.38 × 10−10 and 7.93 × 10−10 M for bare and 1.06 × 10−10 and 3.52 × 10−10 M for modified glassy carbon electrodes, respectively. The applicability of the bare and modified electrodes was demonstrated for the determination of pramipexole in pharmaceutical dosage forms. The selectivity of the developed method was considered in the presence of Ca2+, Na+, K+, and glucose, ascorbic acid, uric acid, and dopamine. Interfering agents except uric acid did not affect pramipexole determination considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldman JG, Goetz CG (2013) James Parkinson. In: Pfeiffer RF, Wszolek ZW, Ebadi M (eds) Parkinson’s disease, 2nd edn. CRC Press, Boca Raton, pp. 3–12

    Google Scholar 

  2. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future. Nat Rev Genet 7:306–318

    Article  CAS  Google Scholar 

  3. Bizière KE, Kurth M (1997) Living with Parkinson’s disease. Demos Vermande, New York

    Google Scholar 

  4. Odnitzky RL (2000) Diagnosis of parkinsonism in the elderly. In: Meara J, Koller WC (eds) Parkinson’s disease and parkinsonism in the elderly. Cambridge University Press, Cambridge, pp. 4–21

    Chapter  Google Scholar 

  5. Arranza M, Snyder MR, Shaw JD, Zesiewicz TA (2013) Parkinson’s disease: a guide to medical treatment. SEEd, Torino

    Google Scholar 

  6. Antonini A, Calandrella D (2011) Pharmacokinetic evaluation of pramipexole. Expert Opin Drug Met 7:1307–1314

    Article  CAS  Google Scholar 

  7. Pawar DS, Dole MN, Sawant SD (2013) Spectrophotometric determination of pramipexole dihydrochloride in bulk and tablet dosage form. Int J Res Pharm Sci 4:183–186

    Article  CAS  Google Scholar 

  8. Middi S, Manjunath S (2012) Development and validation of spectrophotometric methods for quantitative estimation of pramipexole dihyrochloride in bulk and pharmaceutical dosage form. Res J Pharm Technol 5:764–767

    Google Scholar 

  9. Önal A (2011) Spectrophotometric and spectrofluorimetric determination of some drugs containing secondary amino group in bulk drug and dosage forms via derivatization with 7-chloro-4-nitrobenzofurazon. Quim Nov. 34:677–682

  10. Thangabalan B, Vamsi Krishna M, Raviteja NVR, Hajera Begum SK, Manohar Babu S, Vijayaraj Kumar P (2011) Spectrophotometric methods for the determination of pramipexole dihydrochloride in pure and in pharmaceutical formulations. Int J Pharm Pharm Sci 3(SUPPL 3):84–85

    CAS  Google Scholar 

  11. Jain N, Jain R, Kulkarni S, Jain DK, Jain S (2011) Ecofriendly spectrophotometric method development and their validation for quantitative estimation of pramipexole dihydrochloride using mixed hydrotropic agent. J Chem Pharm Res 3:548–552

    CAS  Google Scholar 

  12. Babu GS, Raju CAI (2007) Spectrophotometric determination of pramipexole dihydrochloride monohydrate. Asian J Chem 19:816–818

    CAS  Google Scholar 

  13. Venkata Rajesh N, Deeparamani D (2013) RP-HPLC method for the determination pramipexole dihydrochloride in tablet dosage forms. Int J Pharm Clin Res 5:17–22

    Google Scholar 

  14. Lau YY, Hanson GD, Ichhpurani N (1996) Determination of pramipexole (U-98, 528) in human plasma and urine by high performance liquid chromatography with electrochemical and ultraviolet detection. J Chromatogr B 683:217–223

    Article  CAS  Google Scholar 

  15. Amisetti NR, Kuntamukkala R, Arnipalli MS (2015) Development of a validated LC method for separation of process-related impurities including the R-enantiomer of S-pramipexole on polysaccharide chiral stationary phases. Chirality 27:430–435

    Article  Google Scholar 

  16. Panditrao VM, Sarkate AP, Sangshetti JN, Wakte PS, Shinde DB (2011) Stability-indicating HPLC determination of pramipexole dihydrochloride in bulk drug and pharmaceutical dosage form. J Braz Chem Soc 22:1253–1258

    CAS  Google Scholar 

  17. Pathare DB, Jadhav AS, Shingare MS (2006) Validated chiral liquid chromatographic method for the enantiomeric separation of pramipexole dihydrachloride monohydrate. J Pharm Biomed Anal 41:1152–1156

    Article  CAS  Google Scholar 

  18. Wei D, Wu C, He P, Doug K, Stecher S, Yang L (2014) Chiral liquid chromatography-tandem mass spectrometry assay to determine that dexpramipexole is not converted to pramipexole in vivo after administered in humans. J Chromatogr B 971:133–140

    Article  CAS  Google Scholar 

  19. Bharathi DV, Hotha KK, Sagar PVV, Kumar SS, Naidu A, Mullangic R (2009) Development and validation of a sensitive LC-MS/MS method with electrospray ionization for quantitation of pramipexole in human plasma: application to a clinical pharmacokinetic study. Biomed Chromatogr 23:212–218

    Article  CAS  Google Scholar 

  20. Adav M, Rao R, Kurani H, Rathod J, Patel R, Singhal P, Shrivastav PS (2010) Validated ultra-performance liquid chromatography tandem mass spectrometry method for the determination of pramipexole in human plasma. J Chromatogr Sci 48:811–818

    Article  Google Scholar 

  21. Pawar SM, Dhaneshwar SR (2011) Application of stability indicating high performance thin layer chromatographic method for quantitation of pramipexole in pharmaceutical dosage form. J Liq Chromatogr Relat Technol 34:1664–1675

    Article  CAS  Google Scholar 

  22. Musenga A, Kenndler E, Morganti E, Rasi F, Augusta Raggi M (2008) Analysis of the anti-Parkinson drug pramipexole in human urine by capillary electrophoresis with laser-induced fluorescence detection. Anal Chim Acta 626:89–96

    Article  CAS  Google Scholar 

  23. Panchal JG, Patel RV, Menon SK (2011) Development and validation of GC/MS method for determination of pramipexole in rat plasma. Biomed Chromatogr 25:524–530

    Article  CAS  Google Scholar 

  24. Vemic A, Rakic T, Malenovic A, Medenica M (2015) Chaotropic salts in liquid chromatographic method development for the determination of pramipexole and its impurities following quality-by-design principles. J Pharm Biomed Anal 102:314–320

    Article  CAS  Google Scholar 

  25. Hasemi E, Kheradmand S, Ghorban Dadrass O (2014) Solvent bar microextraction combined with high-performance liquid chromatography for preconcentration and determination of pramipexole in biological samples. Biomed Chromatogr 28:486–491

    Article  Google Scholar 

  26. Srinubabu G, Jaganbabu K, Sudharani B, Venugopal K, Girizasankar G, Rao JVLNS (2006) Development and validation for the determination of an experimental design. Chromatographia 64:95–100

    Article  CAS  Google Scholar 

  27. Merey HA, Helmy MI, Tawakkol SM, Toubar SS, Risk MS (2012) Potentiometric membrane sensors for determination of memantin hydrochloride and pramipexole dihydrochloride monohydrate. Port Electrochim Acta 30:31–43

    Article  CAS  Google Scholar 

  28. Cheemalapati S, Karuppiah C, Chen SM (2014) A sensitive amperometric detection of dopamine agonist drug pramipexole at functionalized multi-walled carbon nanotubes (f-MWCNTs) modified electrode. Ionics 20:1599–1606

    Article  CAS  Google Scholar 

  29. Narayana PS, Teradal NL, Seetharamappa J, Satpati AK (2015) A novel electrochemical sensor for non-ergoline dopamine agonist pramipexole based on electrochemically reduced graphene oxide nanoribbons. Anal Methods 7:3912–3919

    Article  CAS  Google Scholar 

  30. Jain R, Sharma R, Yadav RK, Shrivasta R (2013) Graphene based electrochemical sensor for detection and quantification of dopaminergic agonist drug pramipexole: an electrochemical impedance spectroscopy and atomic force microscopy study. J Electrochem Soc 160:H179–H184

    Article  CAS  Google Scholar 

  31. Jain R, Tiwari DC, Shrivastava S (2014) Polyaniline–bismuth oxide nanocomposite sensor for quantification of anti-parkinson drug pramipexole in solubilized system. Mater Sci Eng B-Adv 185:53–59

    Article  CAS  Google Scholar 

  32. Jain R, Vikas (2011) Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloid Surf B 87:423–426

    Article  CAS  Google Scholar 

  33. Wan Q, Wang X, Yu F, Wang X, Yang N (2009) Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J Appl Electrochem 39:1145–1151

    Article  CAS  Google Scholar 

  34. Zhuang Q, Chen J, Chen J, Lin X (2008) Electrocatalytical properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets. Sens Actuator B-Chem 128:500–506

    Article  CAS  Google Scholar 

  35. Patil RH, Hegde RN, Nandibewoor ST (2011) Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloid Surf B 83:133–138

    Article  CAS  Google Scholar 

  36. Bozal-Palabiyik B, Dogan-Topal B, Uslu B, Can A, Ozkan SA (2013) Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube. J Solid State Electrochem 17:2815–2822

    Article  CAS  Google Scholar 

  37. Kurbanoglu S, Dogan-Topal B, Uslu B, Can A, Ozkan SA (2013) Electrochemical investigations of the anticancer drug idarubicin using multiwalled carbon nanotubes modified glassy carbon and pyrolytic graphite electrodes. Electroanalysis 25:1473–1482

    Article  CAS  Google Scholar 

  38. Karadas N, Bozal-Palabiyik B, Uslu B, Ozkan SA (2013) Functionalized carbon nanotubes-with silver nanoparticles to fabricate a sensor for the determination of zolmitriptan in its dosage forms and biological samples. Sens Actuator B-Chem 186:486–494

    Article  CAS  Google Scholar 

  39. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  40. Wu K, Sun Y, Hu S (2003) Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sens Actuator B-Chem 96:658–662

    Article  CAS  Google Scholar 

  41. Lin H, Li G, Wu K (2008) Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem 107:531–536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study owes much to the financial support from Ankara University, Department of Scientific Research Projects (Project No: 13 L3336001) for which the authors are grateful. This work was a product of the PhD dissertation completed by Burçin Bozal-Palabiyik (Ankara University, Health Sciences Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengi Uslu.

Electronic supplementary material

ESM 1

(DOC 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozal-Palabiyik, B., Uslu, B. Comparative study for voltammetric investigation and trace determination of pramipexole at bare and carbon nanotube-modified glassy carbon electrodes. Ionics 22, 2519–2528 (2016). https://doi.org/10.1007/s11581-016-1774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1774-2

Keywords

Navigation