Skip to main content
Log in

Influence of oxalate anions on manganese electrodeposition in sulfate solution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The influences of oxalate anions on manganese electrodeposition in sulfate solution were investigated on the basis of cathode current efficiency, characterization of SEM-EDX and XRD, solution chemistry calculation, thermodynamics and electrochemical test. The experimental results show that the range of (NH4)2C2O4 was adjusted from 0 mol/L to 4.8 × 10−3 mol/L. And 1.5 × 10−3 mol/L (NH4) 2C2O4 was suitably used with initial pH 7.0. The characterization of SEM indicates that oxalate anions can improve the morphology of electrodeposited films. The electrodeposited films containing manganese were characterized and determined by EDX and XRD. The solution chemistry calculation of catholyte and oxalate anions shows that the main active species are MnSO4, Mn(SO4)2− 2, Mn2+, Mn(SO4)C2O2− 4, MnC2O 4, Mn(NH3)2+, and C2O2− 4. The reaction trend between C2O2− 4 and Mn2+ ions is confirmed by computation of reaction energy. Electrochemical test analysis indicates oxalate anions increase the overpotentials of hydrogen evolution reaction and manganese electrodeposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kelly JJ, Goods SH, Yang NYC (2003) High performance nanostructured Ni-Mn alloy for microsystem applications. Electrochem Solid ST 6:C88–C90

    Article  CAS  Google Scholar 

  2. Sulcius A, Griskonis E, Diaz-Arista P, Trejo G (2009) Influence of ammonium selenate and thiourea mixture on mechanical properties and morphology of Zn-Mn alloy coatings electrodeposited from sulphate-citrate bath. Trans Inst Met Finish 87:254–258

    Article  CAS  Google Scholar 

  3. Sharma RK, Rastogi AC, Singh G (2004) Electrochemical growth and characterization of manganese telluride thin films. Mater Chem Phys 84:46–51

    Article  CAS  Google Scholar 

  4. Gong J, Zangari G (2003) Electrodeposition of sacrificial tin-manganese alloy coatings. Mat Sci Eng A-Struct 344:268–278

    Article  Google Scholar 

  5. Keming C, Wilcox GD (2008) Tin-manganese alloy electrodeposits II. Corrosion performance studies. J Electrochem Soc 155:C53–C61

    Article  Google Scholar 

  6. Díaz-Arista P, Ortiz ZI, Ruiz H, Ortega R, Meas Y, Trejo G (2009) Electrodeposition and characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing ammonium thiocyanate as an additive. Surf Coat Technol 203:1167–1175

    Article  Google Scholar 

  7. Liu YC, Lin QQ, Li LF, Fu JG, Zhu ZS, Wang CQ, Qian D (2014) Study on hydrometallurgical process and kinetics of manganese extraction from low-grade manganese carbonate ores. Int J Min Sci Technol 24:567–571

    Article  CAS  Google Scholar 

  8. Zech O, Haase MF, Shchukin DG, Zemb T, Moehwald H (2012) Froth flotation via microparticle stabilized foams. Colloids Surf A Physicochem Eng Asp 413:2–6

    Article  CAS  Google Scholar 

  9. Shi Q, Feng Q, Zhang G, Deng H (2012) Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf A Physicochem Eng Asp 410:178–183

    Article  CAS  Google Scholar 

  10. Liu X, Huang GY, Li CX, Cheng RJ (2015) Depressive effect of oxalic acid on titanaugite during ilmenite flotation. Miner Eng 79:62–67

    Article  CAS  Google Scholar 

  11. Chen JH, Li YQ, Long QR (2010) Molecular structures and activity of organic depressants for marmatite, jamesonite and pyrite flotation. Trans Nonferrous Metals Soc China 20:1993–1999

    Article  CAS  Google Scholar 

  12. Zhou F, Chen T, Yan CJ, Liang H, Chen T, Li D, Wang QY (2015) The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid. Colloids Surf A Physicochem Eng Asp 466:1–9

    Article  CAS  Google Scholar 

  13. Parrent MD (2012) Separation of pyrolusite and hematite by froth flotation. University of Alberta, Edmonton, pp 67–88

    Google Scholar 

  14. Huang HJ, Hu YH, Sun W (2012) Activation flotation and mechanism of lime-depressed pyrite with oxalic acid. Int J Mining Sci Technol 22:63–67

    Article  CAS  Google Scholar 

  15. Hu YH, Zhang SL, Qiu GZ, Miller JD (2000) Surface chemistry of activation of lime-depressed pyrite in flotation. Trans Nonferrous Metals Soc China 10:798–803

    CAS  Google Scholar 

  16. Godunov EB, Artamonova IV, Gorichev IG, Lainer YA (2013) Influence of oxalic acid on the dissolution kinetics of manganese oxide. Russ Metall 2012:935–941

    Article  Google Scholar 

  17. Sahoo RN, Naik PK, Das SC (2001) Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy 62:157–163

    Article  CAS  Google Scholar 

  18. De Araujo JAM, De Castro MDMR, Lins VDFC (2006) Reuse of furnace fines of ferro alloy in the electrolytic manganese production. Hydrometallurgy 84:204–210

    Article  Google Scholar 

  19. Lu JM, Dreisinger D, Glück T (2014) Manganese electrodeposition—a literature review. Hydrometallurgy 141:105–116

    Article  CAS  Google Scholar 

  20. Ding LF, Fan X, Du J, Liu ZH, Tao CY (2014) Influence of three N-based auxiliary additives during the electrodeposition of manganese. Int J Miner Process 130:34–41

    Article  CAS  Google Scholar 

  21. Padhy SK, Patnaik P, Tripathy BC, Bhattacharya IN (2015) Microstructural aspects of manganese metal during its electrodeposition from sulphate solutions in the presence of quaternary amines. Mater Sci Eng B 193:83–90

    Article  CAS  Google Scholar 

  22. Zor S, Yakar E (2008) Electrodeposition of polypyrrole on aluminium in oxalic acid. J Cbem Soc Pak 30:196–202

    CAS  Google Scholar 

  23. Khorsand S, Raeissi K, Golozar MA (2011) Effect of oxalate anions on zinc electrodeposition from an acidic sulphate bath. J Electrochem Soc 158:377–383

    Article  Google Scholar 

  24. Ren XL, Wei QF, Liu Z, Liu J (2012) Electrodeposition conditions of metallic nickel in electrolytic membrane reactor. Trans Nonferrous Metals Soc China 22:467–475

    Article  CAS  Google Scholar 

  25. Xu FY, Dan ZG, Zhao WN, Han GM, Sun ZH, Xiao K, Jiang LH, Duan N (2015) Electrochemical analysis of manganese electrodeposition and hydrogen evolution from pure aqueous sulfate electrolytes with addition of SeO2. J Electroanal Chem 741:149–156

    Article  CAS  Google Scholar 

  26. Lasia A (1997) Influence of adsorption of organic compounds and surface heterogeneity on the hydrogen evolution reaction. Can J Chem 75:1615–1623

    Article  CAS  Google Scholar 

  27. Sun Y, Tian XK, He BB, Yang C, Pi ZB, Wang YX, Zhang SX (2011) Studies of the reduction mechanism of selenium dioxide and its impact on the microstructure of manganese electrodeposit. Electrochim Acta 56:8305–8310

    Article  CAS  Google Scholar 

  28. Wei QF, Ren XL, Du J, Wei SJ, Hu SR (2010) Study of the electrodeposition conditions of metallic manganese in an electrolytic membrane reactor. Miner Eng 23:578–586

    Article  CAS  Google Scholar 

  29. Bicelli LP, Bozzini B, Mele C, D'Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    CAS  Google Scholar 

  30. Rudnik E (2015) Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions. J Electroanal Chem 741:20–31

    Article  CAS  Google Scholar 

  31. Urbánska J (2011) Polarographic behavior of manganese(II) in the presence of oxalate ions in perchlorate and sulfate solutions. J Solut Chem 40:247–260

    Article  Google Scholar 

  32. Rudnik E, Włoch G (2014) The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths. Ionics 20:1747–1755

    Article  CAS  Google Scholar 

  33. Speight JG (1999) Langeshandbook of chemistry, Fifteenth edn. CD&W Inc, Laramie

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al (2009) Gaussian 09, Revision A 02. Gaussian, Inc, Wallingford CT

    Google Scholar 

  35. Rahimi-Nasrabadi M, Ganjali MR, Gholivand MB, Ahmadi F, Norouzi P, Salavati-Niasari M (2008) A cyclic voltammetry investigation of the complex formation between Cu2+ and some Schiff bases in binary acetonitrile/dimethylformamide mixtures. J Mol Struct 885:76–81

    Article  CAS  Google Scholar 

  36. Lu J, Yang QH, Zhang Z (2010) Effects of additives on nickel electrowinning from sulfate system. Trans Nonferrous Metals Soc China 20:97–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science and Technology Support Program of China (No.2015BAB17B01) and the National Natural Science Foundation of China (No.21376273) for offering the research funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Zhong or S. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J.R., Zhong, H., Wang, S. et al. Influence of oxalate anions on manganese electrodeposition in sulfate solution. Ionics 22, 683–693 (2016). https://doi.org/10.1007/s11581-015-1584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1584-y

Keywords

Navigation