Skip to main content
Log in

Interaction of Li1+x (Ni,Mn,Co)O2 cathode materials with single and complex oxides at 900 °C

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to find efficient barrier materials and inert dopants for the high temperature processing of Li-ion battery cathode materials, a chemical stability of Li1+x (Ni,Mn)O2 at 900 °C in air in contact with Al2O3, Nb2O5, SnO2, TiO2, and CeO2 is studied. The interaction of Li1+x (Ni,Mn)O2 with Al2O3, Nb2O5, and SnO2 results in the formation of the corresponding complex oxides—LiAlO2, Li3NbO4, and Li2SnO3. A first stage of the chemical degradation of Li1+x (Ni,Mn)O2 is usually accompanied by the transformation of its hexagonal crystal structure into the cubic one. The reaction of Li1+x (Ni,Mn)O2 with titania is accompanied by the disappearance of TiO2 and the formation of the Li1+x (Ni,Mn)O2-based solid solution. XRD analysis confirmed the absence of chemical interaction of Li1+x (Ni,Mn)O2 with CeO2 while SEM data demonstrated the absence of eutectic melting at 900 °C. The similar absence of traces of the high temperature chemical interaction with Li1+x (Ni,Mn)O2 is found also for LiAlO2, Li3NbO4, and Li2SnO3. Galvanostatic and cyclic voltammetry studies of Li1+x (Ni,Mn,Co)O2–CeO2 composites demonstrated the increase in the initial discharge capacity of the composite cathodes compared to the native Li1+x (Ni,Mn,Co)O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Croy JR, Gallagher KG, Balasubramanian M, Chen Z, Ren Y, Kim D, et al. (2013) Examining hysteresis in composite x Li2MnO3 (1– x)LiMO2 cathode structures. J Phys Chem C 117:6525–6536

    Article  CAS  Google Scholar 

  2. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  3. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284

    Article  CAS  Google Scholar 

  4. Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844

    Article  CAS  Google Scholar 

  5. Kurilenko KA, Shlyakhtin OA, Brylev OA, Drozhzhin OA (2014) On the chemical interaction of Li1+x(Ni,Mn)O2 with carbon and carbon precursors. Ceram Int 40:16521–16527

    Article  CAS  Google Scholar 

  6. Ferrari АC, Robertson J (2000) Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  7. Lee KT, Jeong S, Cho J (2013) Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc Chem Res 46:1161–1170

    Article  CAS  Google Scholar 

  8. Kweon HJ, Park JJ, Seo JW, Kim GB, Jung BH, Lim HS (2004) Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell. J Power Sources 126:156–162

    Article  CAS  Google Scholar 

  9. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N (2005) Role of alumina coating on Li−Ni−Co−Mn−O particles as positive electrode material for lithium-ion batteries. Chem Mater 17:3695–3704

    Article  CAS  Google Scholar 

  10. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207

    Article  CAS  Google Scholar 

  11. Wang Z, Huang S, Chen B, Wu H, Zhang Y (2014) Infiltrative coating of LiNi0.5Co0.2Mn0.3O2 microspheres with layer-structured LiTiO2: towards superior cycling performances for Li-ion batteries. J Mater Chem A 2:19983–19987

    Article  CAS  Google Scholar 

  12. Li J, Wang L, Zhang Q, He X (2009) Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 190:149–153

    Article  CAS  Google Scholar 

  13. Ilango PR, Subburaj T, Prasanna K, Jo YN, Lee CW (2015) Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol–gel process. Mater Chem Phys 158:45–51

    Article  CAS  Google Scholar 

  14. Wang СС, Jarvis KA, Ferreira PJ, Manthiram A (2013) Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Chem Mater 25:3267–3275

    Article  CAS  Google Scholar 

  15. Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li-ion cell. Chem Mater 12:3788–3791

    Article  CAS  Google Scholar 

  16. Kurilenko KA, Shlyakhtin OA, Brylev OA, Drozhzhin OA (2015) The effect of synthesis conditions on the morphology, cation disorder and electrochemical performance of Li1+xNi0.5Mn0.5O2. Electrochim Acta 152:255–264

    Article  CAS  Google Scholar 

  17. Jongprateep O, Palomas J (2015) Effects of Mg addition and sintering temperatures on chemical compositions, microstructures, densities and dielectric properties of strontium titanate. Ceram Int 41:S63–S68

    Article  CAS  Google Scholar 

  18. Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Bréger J, et al. (2005) Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem Mater 17:2386–2394

    Article  CAS  Google Scholar 

  19. Pang WK, Kalluri S, Peterson VK, Dou SX, Guo Z (2014) Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode. Phys Chem Chem Phys 16:25377–25385

    Article  CAS  Google Scholar 

  20. Gabrisch H, Yazami R, Fultz B (2004) Hexagonal to cubic spinel transformation in lithiated cobalt oxide TEM Investigation. J Electrochem Soc 151:A891–A897

    Article  CAS  Google Scholar 

  21. Choi SH, Shlyakhtin OA, Kim JS, Yoon YS (2005) Structural and electrochemical properties of Li1+xNi0.5Mn0.5O2+δ (0 ≤ x ≤ 0.7) cathode materials for lithium-ion batteries. J Power Sources 140:355–360

    Article  CAS  Google Scholar 

  22. Stoyanova R, Zhecheva E, Vassilev S (2006) Mn4+ environment in layered Li[Mg0.5-xNixMn0.5]O2 oxides monitored by EPR spectroscopy. J Solid State Chem 179:378–388

    Article  CAS  Google Scholar 

  23. Tucker MC, Reimer JA, Cairns EJ, Choi S, Manthiram A (2002) 7 Li NMR studies of chemically-delithiated Li1-xCoO2. J Phys Chem B 106:3842–3847

    Article  CAS  Google Scholar 

  24. Zou H, Gratz E, Apelian D, Wang Y (2013) A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem 15:1183–1191

    Article  CAS  Google Scholar 

  25. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  26. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  27. Wu SH, Yu MT (2007) Preparation and characterization of o-LiMnO2 cathode materials. J Power Sources 165:660–665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Russian Foundation for Basic Research, grant No. 14-08-31644 mol_a. Kind help and fruitful discussions of Dr. O.A. Brylev (MSU) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Shlyakhtin.

Electronic supplementary material

Supplementary 1

(DOCX 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurilenko, K.A., Gorbunov, D.V. & Shlyakhtin, O.A. Interaction of Li1+x (Ni,Mn,Co)O2 cathode materials with single and complex oxides at 900 °C. Ionics 22, 601–607 (2016). https://doi.org/10.1007/s11581-015-1581-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1581-1

Keywords

Navigation