Skip to main content
Log in

A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The poor electronic conductivity and low lithium-ion diffusion are the two major obstacles to the largely commercial application of LiFePO4 cathode material in power batteries. In order to improve the defects of LiFePO4, a novel carbon source polyacrylonitrile (PAN), which would form the hierarchical porous structure after carbonization, is fabricated and used. This work comes up with a simple and facile carbothermal reduction method to prepare porous-carbon-coated LiFePO4 (C-LiFePO4-PC) composite and to study the effect of carbon-coated temperature on ameliorating the electrochemical performance. The obtained C-LiFePO4-PC composite shows a high initial discharge capacity of 164.1 mA h g−1 at 0.1 C and good cycling stability as well as excellent rate capacity (49.0 mA h g−1 at 50 C). The most possible factors that improve the electrochemical performance could be related to the enhancement of electronic conductivity and the existence of porous carbon layers. In a word, the C-LiFePO4-PC material would become an excellent candidate for application in the fields of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  3. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  4. Gong ZL, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  5. Reimers JN, Dahn JR (1992) Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097

    Article  CAS  Google Scholar 

  6. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    Article  CAS  Google Scholar 

  7. Luo D, Li G, Yu C, Yang SI, Zheng J, Guan X, Li L (2012) Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between −10.4 and 45.4 °C. J Mater Chem 22:22233–22241

    Article  CAS  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  9. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electronchem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  10. Gong CL, Deng FL, Tsui CP, Xue ZG, Ye YS, Tang CY, Zhou XP, Xie XL (2014) PANI–PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries. J Mater Chem A 2:19315–19323

    Article  CAS  Google Scholar 

  11. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (Electronic, Ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921

    Article  CAS  Google Scholar 

  12. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev. 104:4271–4301

    Article  CAS  Google Scholar 

  13. Mosa J, Aparicio M, Duran M, Robert CL, Sanchez C (2014) Nanocrystalline mesoporous LiFePO4 thin-films as cathodes for Li-ion microbatteries. J Mater Chem A 2:3038–3046

    Article  CAS  Google Scholar 

  14. Wang G, Liu H, Liu J, Qiao S, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948

    Article  CAS  Google Scholar 

  15. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  16. Wang GX, Yang L, Bewlay SL, Chen Y, Liu HK, Kudo T (2005) Electrochemical properties of carbon coated LiFePO4 cathode materials. J Power Sources 146:521–524

    Article  CAS  Google Scholar 

  17. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966

    Article  CAS  Google Scholar 

  18. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik SJamnik J (2006) Porous olivine composites synthesized by sol–gel technique. J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  19. Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21:2710–2714

    Article  CAS  Google Scholar 

  20. Wang GX, Liu H, Liu J, Qiao SZ, Lu GQM, Munroe P, Ahn H (2010) Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater 22:4944–4948

    Article  CAS  Google Scholar 

  21. Ni HF, Liu JK, Fan LZ (2013) Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 5:2164–2168

    Article  CAS  Google Scholar 

  22. Kong LB, Zhang P, Liu MC, Luo YC, Kang L (2012) Fabrication of promising LiFePO4/C composite with a core–shell structure by a moderate in situ carbothermal reduction method. Electrochim Acta 70:19–24

    Article  CAS  Google Scholar 

  23. Zaghiba K, Julien C (2005) Structure and electrochemistry of FePO4·2H2O hydrate. J Power Sources 142:279–284

    Article  Google Scholar 

  24. Adelhelm P, Hu YS, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19:4012–4017

    Article  CAS  Google Scholar 

  25. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  26. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun 129:311–314

    Article  CAS  Google Scholar 

  27. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  28. Wang GX, Yang L, Bewlay SL, Chen Y, Liu HK, Ahn H (2005) Electrochemical properties of carbon coated LiFePO4 cathode materials. J Power Sources 146:521–524

    Article  CAS  Google Scholar 

  29. Du J, Kong LB, Liu H, Liu JB, Liu MC, Zhang P, Luo YC, Kang L (2014) Template-free synthesis of porous–LiFePO4/C nanocomposite for high power lithium-ion batteries. Electrochim Acta 123:1–6

    Article  CAS  Google Scholar 

  30. Wang JJ, Sun XL (2011) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

  31. Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) The design of a lifepo4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

  32. Saravanan KR, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ Sci 3:457–463

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 51362018, 21163010) and the Key Project of Chinese Ministry of Education (no. 212183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Kong, LB., Liu, JB. et al. A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics 22, 185–192 (2016). https://doi.org/10.1007/s11581-015-1549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1549-1

Keywords

Navigation