Skip to main content

Advertisement

Log in

A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High energy density materials such as NiO that undergoes conversion reaction hold promise for lithium (Li)-ion batteries (LIBs). However, porous NiO experiences substantial volume change due to the diffusion-induced stress during electrochemical operation, which causes mechanical fractures and morphological changes of porous NiO electrodes, leading to capacity fade through internal short circuit (ISCr). In this study, both non-destructive and destructive operations were used to visualize and quantify the origins and evolutions of the capacity fading of porous NiO/Ni foam electrodes. Results indicated that charge transfer resistance was dominant among all the internal resistances before ISCr, whereas solid electrolyte interface (SEI) resistance was dominant after ISCr of LIBs. The generation of the large amount of heat and pressure during ISCr caused the volume expansion and the formation of the micro-cracks in the struts of the porous NiO/Ni foam electrodes. Together with the electrolyte decomposition, this led to capacity fade. The results of this study provide insights for developing of NiO/Ni electrode for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. IEA World energy outlook (2013) (International Energy Agency 2013) International Energy Agency. http://www.worldenergyoutlook.org/media/weowebsite/2013/WEO2013_Ch06_Renewables.pdf. Accessed 28/01/2015 2015

  2. Mohr S, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

    Article  CAS  Google Scholar 

  3. Lee SH, Harding JR, Liu DS, D’Arcy JM, Shao-Horn Y, Hammond PT (2014) Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem Mater 26(8):2579–2585

    Article  CAS  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  5. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  6. Spinner N, Zhang L, Mustain WE (2014) Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. J Mater Chem A 2(6):1627–1630

    Article  CAS  Google Scholar 

  7. Kumar Rai A, Tuan Anh L, Park CJ, Kim J (2013) Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram Int 39(6):6611–6618. doi:10.1016/j.ceramint.2013.01.097

    Article  CAS  Google Scholar 

  8. Wang C, Wang D, Wang Q, Chen H (2010) Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J Power Sources 195(21):7432–7437

    Article  CAS  Google Scholar 

  9. Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256. doi:10.1016/j.jallcom.2013.04.001

    Article  CAS  Google Scholar 

  10. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. doi:10.1002/adma.201000717

    Article  CAS  Google Scholar 

  11. Zhang WJ (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885. doi:10.1016/j.jpowsour.2010.08.114

    Article  CAS  Google Scholar 

  12. An K, Barai P, Smith K, Mukherjee PP (2014) Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes. J Electrochem Soc 161(6):A1058–A1070

    Article  CAS  Google Scholar 

  13. Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium‐ion batteries. J Electrochem Soc 145(10):3647–3667

    Article  CAS  Google Scholar 

  14. Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042–1048

    Article  CAS  Google Scholar 

  15. Maleki H, Howard JN (2009) Internal short circuit in Li-ion cells. J Power Sources 191(2):568–574

    Article  CAS  Google Scholar 

  16. Cai W, Wang H, Maleki H, Howard J, Lara-Curzio E (2011) Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells. J Power Sources 196(18):7779–7783

    Article  CAS  Google Scholar 

  17. Orendorff CJ, Roth EP, Nagasubramanian G (2011) Experimental triggers for internal short circuits in lithium-ion cells. J Power Sources 196(15):6554–6558. doi:10.1016/j.jpowsour.2011.03.035

    Article  CAS  Google Scholar 

  18. Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H-J (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47(12):1899–1911

    Article  CAS  Google Scholar 

  19. Xiong M, Tang H, Wang Y, Pan M (2014) Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr Polym 101:1140–1146

    Article  CAS  Google Scholar 

  20. Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 1:012039

    Article  Google Scholar 

  21. Wood GC, Wright I, Ferguson J (1965) The oxidation of Ni and Co and of Ni/Co alloys at high temperatures. Corros Sci 5(9):645–661

    Article  CAS  Google Scholar 

  22. Gulbransen EA, Andrew KF (1957) High temperature oxidation of high purity nickel between 750 and 1050 C. J Electrochem Soc 104(7):451–454

    Article  CAS  Google Scholar 

  23. Baur J, Bartlett R, Ong J, Fassell W (1963) High‐pressure oxidation of metals, nickel in oxygen. J Electrochem Soc 110(3):185–189

    Article  CAS  Google Scholar 

  24. Clarke DR (2002) Stress generation during high-temperature oxidation of metallic alloys. Curr Opinion Solid State Mater Sci 6(3):237–244

    Article  CAS  Google Scholar 

  25. Venter A, Botha JR (2011) Optical and electrical properties of NiO for possible dielectric applications. S Afr J Sci 107(1–2):1–6

    Google Scholar 

  26. Liu C, Huntz AM, Lebrun JL (1993) Origin and development of residual stresses in the Ni/NiO system: in-situ studies at high temperature by x-ray diffraction. Mater Sci Eng A 160(1):113–126. doi:10.1016/0921-5093(93)90504-8

    Article  Google Scholar 

  27. Huntz A, Andrieux M, Molins R (2006) Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity II. Mechanical resistance of NiO films. Mater Sci Eng A 417(1):8–15

    Article  Google Scholar 

  28. Fasaki I, Koutoulaki A, Kompitsas M, Charitidis C (2010) Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl Surf Sci 257(2):429–433. doi:10.1016/j.apsusc.2010.07.006

    Article  CAS  Google Scholar 

  29. Conde CF, Dominguez-Rodriguez A, Conde A, Marquez R (1976) Microhardness tests in nickel oxide single crystals. Phys Status Solidi A 33(1):K25–K29. doi:10.1002/pssa.2210330154

    Article  CAS  Google Scholar 

  30. Qi Y, Bruckel P, Lours P (2003) Interfacial toughness of the nickel–nickel oxide system. J Mater Sci Lett 22(5):371–374

    Article  CAS  Google Scholar 

  31. Cabanas-Polo S, Bermejo R, Ferrari B, Sanchez-Herencia A (2012) Ni-NiO composites obtained by controlled oxidation of green compacts. Corros Sci 55:172–179

    Article  CAS  Google Scholar 

  32. Yang W, Cheng G, Dong C, Bai Q, Chen X, Peng Z, Zhang Z (2014) NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J Mater Chem A 2(47):20022–20029

    Article  CAS  Google Scholar 

  33. Huang P, Zhang X, Wei J, Pan J, Sheng Y, Feng B (2015) The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries. Mater Res Bull 63:112–115

    Article  CAS  Google Scholar 

  34. Ni S, Li T, Lv X, Yang X, Zhang L (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274

    Article  CAS  Google Scholar 

  35. Zhao W, Luo G, Wang CY (2015) Modeling nail penetration process in large-format Li-ion cells. J Electrochem Soc 162(1):A207–A217

    Article  CAS  Google Scholar 

  36. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634

    Article  CAS  Google Scholar 

  37. Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175

    Article  CAS  Google Scholar 

  38. Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49(76):8459–8461

    Article  CAS  Google Scholar 

  39. Ni S, Zhang J, Lv X, Yang X, Zhang L (2015) Superior electrochemical performance of Li3VO4/NiO/Ni electrode via a coordinated electrochemical reconstruction. J Power Sources 291:95–101. doi:10.1016/j.jpowsour.2015.05.015

    Article  CAS  Google Scholar 

  40. Ni S, Ma J, Zhang J, Yang X, Zhang L (2015) Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction. Chem Commun 51(27):5880–5882. doi:10.1039/c5cc00486a

    Article  CAS  Google Scholar 

  41. Ni S, Lv X, Li T, Yang X, Zhang L, Ren Y (2013) A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery. Electrochim Acta 96:253–260. doi:10.1016/j.electacta.2013.02.106

    Article  CAS  Google Scholar 

  42. Kolb D, Schneider J (1986) Surface reconstruction in electrochemistry: Au (100-(5 × 20), Au (111)-(1 × 23) and Au(110)-(1 × 2). Electrochim Acta 31(8):929–936

    Article  CAS  Google Scholar 

  43. Schneider J, Kolb D (1988) Potential-induced surface reconstruction of Au (100). Surf Sci 193(3):579–592

    Article  CAS  Google Scholar 

  44. Stickney JL, Villegas I, Ehlers CB (1989) In situ restoration of atomically well-ordered copper single-crystal electrode surfaces. J Am Chem Soc 111(16):6473–6474

    Article  CAS  Google Scholar 

  45. Cali GJ, Berry GM, Bothwell ME, Soriaga MP (1991) Electrochemical regeneration of clean and well-ordered Pd (111) surfaces. J Electroanal Chem Interfacial Electrochem 297(2):523–528

    Article  CAS  Google Scholar 

  46. Rahman MA, Wen C (2015) Nanogravel structured NiO/Ni foam as electrode for high performance lithium-ion batteries. IONICS. doi:10.1007/s11581-015-1475-2

    Google Scholar 

  47. Fang W, Ramadass P, Zhang ZJ (2014) Study of internal short in a Li-ion cell—II. Numerical investigation using a 3D electrochemical-thermal model. J Power Sources 248:1090–1098

    Article  CAS  Google Scholar 

  48. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy, 48. Wiley, Hoboken

    Google Scholar 

  49. Moss P, Au G, Plichta E, Zheng J (2008) An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc 155(12):A986–A994

    Article  CAS  Google Scholar 

  50. Love CT, Baturina OA, Swider-Lyons KE (2015) Observation of lithium dendrites at ambient temperature and below. ECS Electrochem Lett 4(2):A24–A27

    Article  CAS  Google Scholar 

  51. Tröltzsch U, Kanoun O, Tränkler H-R (2006) Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta 51(8):1664–1672

    Article  Google Scholar 

  52. Winter M, Novák P, Monnier A (1998) Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the Brunauer‐Emmett‐Teller surface area. J Electrochem Soc 145(2):428–436

    Article  CAS  Google Scholar 

  53. Wang C, Appleby AJ, Little FE (2001) Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta 46(12):1793–1813

    Article  CAS  Google Scholar 

  54. Wang DW, Li F, Fang HT, Liu M, Lu GQ, Cheng HM (2006) Effect of pore packing defects in 2D ordered mesoporous carbons on ionic transport. J Phys Chem B 110(17):8570–8575. doi:10.1021/jp0572683

    Article  CAS  Google Scholar 

  55. Yuan D, Zeng J, Kristian N, Wang Y, Wang X (2009) Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem Commun 11(2):313–317. doi:10.1016/j.elecom.2008.11.041

    Article  CAS  Google Scholar 

  56. Rodrigues S, Munichandraiah N, Shukla A (1999) AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem 3(7–8):397–405

    Article  CAS  Google Scholar 

  57. Wang J, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2014) A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J Solid State Electrochem 18(9):2459–2467

    Article  CAS  Google Scholar 

  58. Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781. doi:10.1021/nn506624g

    Article  CAS  Google Scholar 

  59. Sawai K, Ohzuku T (2003) Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J Electrochem Soc 150(6):A674–A678

    Article  CAS  Google Scholar 

  60. Dupont L, Laruelle S, Grugeon S, Dickinson C, Zhou W, Tarascon J-M (2008) Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J Power Sources 175(1):502–509

    Article  CAS  Google Scholar 

  61. Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51(2):109–173. doi:10.1016/0079-6816(96)00002-0

    Article  CAS  Google Scholar 

  62. Giesen M, Beltramo G, Dieluweit S, Müller J, Ibach H, Schmickler W (2005) The thermodynamics of electrochemical annealing. Surf Sci 595(1–3):127–137. doi:10.1016/j.susc.2005.07.040

    Article  CAS  Google Scholar 

  63. Lin F, Nordlund D, Weng TC, Zhu Y, Ban C, Richards RM, Xin HL (2014) Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 5. doi:10.1038/ncomms4358

  64. Ni S, Lv X, Ma J, Yang X, Zhang L (2014) A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries. J Power Sources 270:564–568. doi:10.1016/j.jpowsour.2014.07.137

    Article  CAS  Google Scholar 

  65. Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5. doi:10.1038/ncomms4529

  66. Yufit V, Shearing P, Hamilton R, Lee P, Wu M, Brandon N (2011) Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem Commun 13(6):608–610

    Article  CAS  Google Scholar 

  67. Ning G, Haran B, Popov BN (2003) Capacity fade study of lithium-ion batteries cycled at high discharge rates. J Power Sources 117(1):160–169

    Article  CAS  Google Scholar 

  68. Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon JM (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett 5(12):A286–A289

    Article  Google Scholar 

Download references

Acknowledgment

This research is financially supported by the Australian Research Council (ARC) through the ARC Discovery Project DP110101974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuie Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Wen, C. A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries. Ionics 22, 173–184 (2016). https://doi.org/10.1007/s11581-015-1542-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1542-8

Keywords

Navigation