Skip to main content
Log in

Ionic-protonic conduction analysis and dielectric relaxation behavior of the rubidium ammonium arsenate tellurate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The rubidium ammonium arsenate tellurate Rb2.42(NH4)0.58H2AsO4HAsO4.Te(OH)6 compound was obtained by slow evaporation at room temperature. The differential scanning calorimetry (DSC) has shown three phase transitions at 453, 483, and 491 K, confirmed by the differential thermal analysis (D.T.A). As for the differential thermogravimetric analysis (TG) curve, it has revealed that no mass loss was detected before 475 K. So, the phase transition observed at 453 K does not correspond to the decomposition of this material. Rb2.42(NH4)0.58H2AsO4HAsO4.Te(OH)6 was characterized by impedance spectroscopy technique measured in the 1 KHz–9.91 MHz frequency range from 298 to 483 K. Besides, the cole-cole (z” versus z’) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE), and Warburg element (W). Furthermore, the conductivity evolution versus temperature has shown the presence of the ionic-protonic superconduction phase transition. The dielectric properties’ dependence on both temperature and frequencies of the compound has been reported. The ionic-protonic conductivity and conductivity relaxation calculated from the impedance and modulus spectra, respectively, were found to be thermally activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zilber R, Durif A, Averbuch-Pouchot MT (1980) Acta Crystallogr B 36:2743

    Article  Google Scholar 

  2. Zilber R, Durif A, Averbuch-Pouchot MT (1981) Acta Crystallogr B 37:650

    Article  Google Scholar 

  3. Zilber R, Durif A, Averbuch-Pouchot MT (1982) Acta Crystallogr B 38:1554

    Article  Google Scholar 

  4. Dammak M, Khemakhem H, Mhiri T, Kolsi AW, Daoud A (1998) Alloys Compd 280:107

    Article  CAS  Google Scholar 

  5. Dammak M, Khemakhem H, Mhiri T, Kolsi AW, Daoud A (1999) Solid State Chem 145:612

    Article  CAS  Google Scholar 

  6. Khemakhem H (1999) Ferroelectrics 234:47

    Article  CAS  Google Scholar 

  7. Dammak M, Khemakhem H, Zouari N, Kolsi AW, Mhiri T (2000) Solid State Ionics 127:125

    Article  CAS  Google Scholar 

  8. Litaiem H, Dammak M, Mhiri T, Cousson A (2005) Alloys Compd 396:34

    Article  CAS  Google Scholar 

  9. Bechibani I, litaiem H, Ktari L, Lhoste J, Dammak M (2013) Mol Struct 1045:199

  10. Bechibani I, litaiem H, Ktari L, Garcia-Granda S, Dammak M (2014) Mol Struct 1075:579

  11. Dammak M, Ktari L, Cousson A, Mhiri T (2005) Solid State Chem 178:2109

    Article  CAS  Google Scholar 

  12. Ktari L, Dammak M, Hadrich A, Cousson A, Nierlich M, Romain F, Mhiri T (2004) Solid State Sci 6:1393

    Article  CAS  Google Scholar 

  13. Ktari L, Dammak M, Mhiri T, Savariault Jean-Michel (2001) Solid State Chem 161:1

  14. Ktari L, Dammak M, Madani A, Mhiri T (2001) Solid State Ionics 145:225

    Article  CAS  Google Scholar 

  15. Dammak M, Litaiem H, Mhiri T (2006) Alloys Compd 416:228

    Article  CAS  Google Scholar 

  16. Ghorbel K, Litaiem H, Ktari L, Garcia-granda S, Dammak M (2015) Mol Struct 1079:225

    Article  CAS  Google Scholar 

  17. Faby J, Loub J, Feltl L (1982) Therm Anal 24:95

    Article  Google Scholar 

  18. Bazan B, Mesa JL, Pizarro JL, Lezama L, Pena A, Arriortua MI, Roja T (2006) Sol State Chem 179:1459

    Article  CAS  Google Scholar 

  19. Ekambaram S, Sevov SC (2000) Inorg Chem 39:2405

    Article  CAS  Google Scholar 

  20. Cole KS, Cole RH (1941) Chem Phys 43:341

    Google Scholar 

  21. Mostafa MF, Atallah AS (1999) Phys Lett A 264:242

  22. Macdonald JR (1973) Electroanalytical chemistry 47:182

  23. Jonscher AK (1975) Phys Stat Sol (a) 32:665

  24. Bauerle JF (1969) Chem Phys 30:2657

    CAS  Google Scholar 

  25. Seeger A, Lunkenheimer P, Hember J, Hember J, Mukhin AA, Ivanov VY, Balbushov AM, Loidl A (1999) Phys Condens Mtter 11:3273

    Article  CAS  Google Scholar 

  26. Anantha PS, Hariharn K (2005) Mater Sci Eng B 121:12

  27. Kyritsis A, Pissi P, Grammatikakis I (1995) Polym Sci Part B Polym Phys 33:1737

    Article  CAS  Google Scholar 

  28. Palet HK, Martin SW (1992) Phys Rev B 45:10292

    Article  Google Scholar 

  29. Agrawal SL, Singh M, Tripathi M, Mauli Dwivedi M (2009) Kamlesh Pandey Mater Sci 44:6060

    Article  CAS  Google Scholar 

  30. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Chemistry 78:639

    CAS  Google Scholar 

  31. Sonali Saha TP (2002) Sinha Phys Rev B 65:134103

    Article  Google Scholar 

  32. Ramesh S, Arof AK (2001) Mater Sci Eng B 85:11

    Article  Google Scholar 

  33. Kolodziej H, Sodczyk L (1971) Acta Phys Polon A 39:59

    CAS  Google Scholar 

  34. Ingram MD (1987) Phys Chem Glasses 28:215

    CAS  Google Scholar 

  35. Hutchins G, Abu-Alkhair O, El-Nahass MM, Abdel-Hady K (2007) Non-Cryst Solids 353:4137

    Article  CAS  Google Scholar 

  36. Prasad K, Lily K, Kumari KL (2007) Yadav, Phys. Chem Solids 68:1508

    Article  CAS  Google Scholar 

  37. Khemakhem H, Ravez J, Daoud A (1996) Ferroelectrics 188:41

    Article  CAS  Google Scholar 

  38. Khemakhem H, Von der Muhll R, Daoud A, Ravez J (1997) Phys Stat Sol (a) 160:243

Download references

Acknowledgments

This work is supported by the Ministry of the Higher Education and Research of Tunisia and Spanish MINECO MAT2013-40950-R and ERDF for financial support. All the authors would like to express their thanks to Dr. N. Zouari for his help in the dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Litaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbel, K., Litaiem, H., Ktari, L. et al. Ionic-protonic conduction analysis and dielectric relaxation behavior of the rubidium ammonium arsenate tellurate. Ionics 22, 251–260 (2016). https://doi.org/10.1007/s11581-015-1538-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1538-4

Keywords

Navigation