Skip to main content

Advertisement

Log in

Preparation and properties of bisphenol A sensor based on multiwalled carbon nanotubes/Li4Ti5O12-modified electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new electrochemical sensor based on the multiwalled carbon nanotube (MWCNT)/Li4Ti5O12-modified glassy carbon electrode for determination of bisphenol A (BPA) was developed by modifying the surface of a glassy carbon electrode with the prepared composite Li4Ti5O12/MWCNTs. The morphology and structure of the composite were characterized by infrared spectroscopy and scanning electron microscope. The obtained electrochemical sensor Li4Ti5O12/MWCNTs/GCE takes advantages of large specific surface area of the Li4Ti5O12 nanostructure, excellent adsorption properties, and electrochemical properties of MWCNTs. Under optimal conditions, the response of the proposed sensor to BPA was linear in the BPA concentration range from 1.0 × 10−7 to 1.0 × 10−5 mol L−1 and the detection limit was of 7.8 × 10−8 mol L−1 according to the 3σ rule. The results revealed that the newly developed sensor exhibited high sensitivity and selectivity, excellent electrochemical performance, and fast response to BPA, allowing it to be used for the detection of BPA in actual samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113:926–933

    Article  CAS  Google Scholar 

  2. Suzuki T, Nakagawa Y, Takano I, Yaguchi K, Yasuda K (2004) Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ Sci Technol 38:2389–2396

    Article  CAS  Google Scholar 

  3. Staples CA, Dome PB, Klecha GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  4. Li W, Seifert M, Xu Y, Hock B (2004) Comparative study of estrogenic potencies of estradiol, tamoxifen, bisphenol A and resveratrol with two in vitro bioassays. Environ Int 30:329–335

    Article  CAS  Google Scholar 

  5. Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521

    Article  CAS  Google Scholar 

  6. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003–2008

    Article  CAS  Google Scholar 

  7. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food. J Chromatogr A 1216:449–469

    Article  Google Scholar 

  8. Lu C, Li J, Yang Y, Lin JM (2010) Determination of bisphenol A based on chemiluminescence from gold (III)-peroxymonocarbonate. Talanta 82:1576–1580

    Article  CAS  Google Scholar 

  9. Yin HS, Zhou YL, Ai SY, Chen QP, Zhu XB, Liu XG, Zhu LS (2010) Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J Hazard Mater 174:236–243

    Article  CAS  Google Scholar 

  10. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D (2007) Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens Bioelectron 23:60–65

    Article  CAS  Google Scholar 

  11. Wang X, Zeng HL, Wei YL, Lin JM (2006) A reversible fluorescence sensor based on insoluble β-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors Actuators B 114:565–572

    Article  CAS  Google Scholar 

  12. Yin HS, Zhou YL, Ai SY (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. J Electroanal Chem 626:80–88

    Article  CAS  Google Scholar 

  13. Gan P, Compton RG, Foord JS (2013) The measurement of the Gibbs energy of transfer between oil and water using a nano-carbon paste electrode. Electroanalysis 25:2423–2434

    Article  CAS  Google Scholar 

  14. Johan MR, Ibrahim S (2011) Neural networks for Nyquist plots prediction in a nanocomposite polymer electrolyte (PEO–LiPF6–EC–CNT). Ionics 17:683–696

    Article  CAS  Google Scholar 

  15. Poorahong S, Thammakhet C, Thavarungkul P, Limbut W, Numnuam A, Kanatharana P (2012) Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchim Acta 176:91–99

    Article  CAS  Google Scholar 

  16. Li YG, Gao Y, Cao Y, Li HM (2012) Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sensors Actuators B 171–172:726–733

    Article  Google Scholar 

  17. Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon JM, Shukla AK (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem Mater 22:2857–2863

    Article  CAS  Google Scholar 

  18. Li Y, Zhao HL, Tian ZH, Qiu WH, Li X (2008) Heat treatment effect on electrochemical properties of spinel Li4Ti5O12. Rare Metals 27:165–169

    Article  CAS  Google Scholar 

  19. Raja MW, Mahanty S, Kundu M, Basu RN (2009) Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous cornbustion technique. J Alloy Compd 468:258–262

    Article  CAS  Google Scholar 

  20. Sandhya CP, John B, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20:601–620

    Article  CAS  Google Scholar 

  21. Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2009) Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671–679

    Article  CAS  Google Scholar 

  22. Zhu YR, Yin LC, Yi TF, Liu HP, Xie Y, Zhu RS (2013) Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material. J Alloy Compd 547:107–112

    Article  CAS  Google Scholar 

  23. Zheng SW, Xu YL, Zhao CJ, Liu HK, Qian XZ, Wang JH (2012) Synthesis of nano-sized Li4Ti5O12/C composite anode material with excellent high-rate performance. Mater Lett 68:32–35

    Article  CAS  Google Scholar 

  24. Yan H, Zhu Z, Zhang D, Li W, Qi L (2012) A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithium-ion secondary batteries. J Power Sources 219:45–51

    Article  CAS  Google Scholar 

  25. Liu CY, Bard AJ, Wudl F, Weitz I, Heath JR (1999) Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors. Electrochem Solid-State Lett 2:577–578

    Article  CAS  Google Scholar 

  26. Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523:86–92

    Article  CAS  Google Scholar 

  27. Dempsey E, Diamond D, Collier A (2004) Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly (thionine) film. Biosens Bioelectron 20:367–377

    Article  CAS  Google Scholar 

  28. Andreescu S, Sadik OA (2004) Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Anal Chem 76:552–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21105053, 21175077, and 51102138), the National Basic Research Program of China (2012CB722606), the Scientific and Technical Development Project of Qingdao (12-1-4-3-(4)-jch), and Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (2010BSE08003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 50 kb)

Fig. S2

(DOC 2785 kb)

Fig. S3

(DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yang, X., Gu, Yx. et al. Preparation and properties of bisphenol A sensor based on multiwalled carbon nanotubes/Li4Ti5O12-modified electrode. Ionics 21, 885–893 (2015). https://doi.org/10.1007/s11581-014-1217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1217-x

Keywords

Navigation