Skip to main content
Log in

Effect of mixed glass formers on the crystallization kinetics in AgI–Ag2O–V2O5–MoO3 glassy superionic system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The crystallization and glass transition kinetics using differential scanning calorimetry (DSC) in 50AgI–33.33Ag2O–16.67[(V2O5)1−x –(MoO3) x ] superionic glassy system is discussed. Thermal stability of glass, studied using various criteria, does not vary significantly with glass former variation. However, the activation energies for structural relaxation (E s) at glass transition temperature and crystallization (E c) obtained using Moynihan and Kissinger, Matusita-Sakka formulations found to exhibit interesting trends with MoO3 substitution in the glass matrix. It is noticed that the electrical conductivity (σ)–temperature (T) cycles obtained at a typical heating rate of 1 °C/min do exhibit significant thermal events. The conductivity after first heating cycle at room temperature is found to be increasing with MoO3 content and maximum for x = 0.3 (~10−3 Ω−1 cm−1 at 30 °C) which is comparable to that of the host 50AgI–33.33Ag2O–16.67V2O5 glassy system. The parameters obtained from σT plots and DSC scans do complement each other in a particular range of composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tuller HL, Button DP, Uhlmann DR (1980) J Non-Cryst Solids 40:93

    Article  CAS  Google Scholar 

  2. Minami T, Takuma Y, Tanaka M (1977) J Electrochem Soc 124:1659

    Article  CAS  Google Scholar 

  3. Saito T, Tatsunisago M, Minami T (1993) Solid State Ion 61:285

    Article  CAS  Google Scholar 

  4. Foltyn M, Wasiucionek M, Garbarczyk J, Nowinski JL (2005) Solid State Ion 176:2137

    Article  CAS  Google Scholar 

  5. Dalvi A, Shahi K (2002) Solid State Ion 148:431

    Article  CAS  Google Scholar 

  6. Shimizu Y, Azuma Y, Michishita S (1997) J Mater Chem 7:1487

    Article  CAS  Google Scholar 

  7. Vaidhyanathan B, Ganguli M, Rao KJ (1994) J Solid State Chem 113:448

    Article  CAS  Google Scholar 

  8. Gupta N, Dalvi A, Awasthi AM, Bhardwaj S (2008) Solid State ionics. In: Chowdhari BVR et al (eds) Proceedings of 11th Asian Conference on Solid State Ionics, Coimbatore, India, Narosa, Mcmillan series, New Delhi, p. 550

  9. Adams S, Hariharan K, Maier J (1996) Solid Stat Ion 86–88:503

    Article  Google Scholar 

  10. Krasowski K, Garbarczyk JE, Wasiucionek M (2000) Phys Stat Sol (a) 181:157

    Article  CAS  Google Scholar 

  11. Gupta N, Dalvi A (2010) J Therm Anal Calorim 102:851

    Article  CAS  Google Scholar 

  12. Krasowski K, Garbarczyk JE, Wasiucionek M (2001) Phys Stat Sol (a) 183:381

    Article  CAS  Google Scholar 

  13. Gupta N, Dalvi A, Awasthi AM, Bhardwaj S (2010) Solid State Ion 180:1607

    Article  CAS  Google Scholar 

  14. Suresh Kumar R, Hariharan K, Dhanabalan M, Reddy KV (1996) Solid State Ion 86–88:441

    Article  Google Scholar 

  15. Bhattacharya S, Ghosh A (2003) Solid State Ion 161:61

    Article  CAS  Google Scholar 

  16. Garbarczyk JE, Machowski P, Wasiucionek M, Tykarsi L, Bacewicz R, Alek Siejuk A (2000) Solid State Ion 136–137:1077

    Article  Google Scholar 

  17. Hariharan K, Sangamitra C, Sukeshini AM (1992) Solid State Ion 53–56:1179

  18. Suthanthiraraj SA, Murugesan S, Maruthamuthu P (2002) Mat Res Bull 37:2145

    CAS  Google Scholar 

  19. Magistris A, Chiodelli G, Duclot MJ (1983) Solid State Ion 9(10):611

    Article  Google Scholar 

  20. Agrawal RC, Verma ML, Gupta RK, Kumar R (2002) J Phys D Appl Phys 35:810

    Article  CAS  Google Scholar 

  21. Sekhon SS, Chandra S (1999) J Mater Sci Lett 18:635

    Article  CAS  Google Scholar 

  22. Tatsumisago M, Shinkuma Y, Minami T (1991) Nature 354:217

    Article  CAS  Google Scholar 

  23. Tatsumisago M, Saito T, Minami T (2001) Chem Lett 30:790

    Article  Google Scholar 

  24. Adams S, Hariharan K, Maier J (1995) Solid Stat Ion 75:193

    Article  CAS  Google Scholar 

  25. Kissinger H (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  26. Moynihan T, Easteal AJ, Wilder J (1974) J Phys Chem 78:2673

    Article  CAS  Google Scholar 

  27. Hayashi A, Tatsumisago M, Minami T (2000) J Non-Cryst solids 276:27

    Article  CAS  Google Scholar 

  28. Dalvi A, Shahi K (2004) J Non Cryst Solids 341:124

    Article  CAS  Google Scholar 

  29. Dalvi A, Awasthi AM, Bharadwaj S, Shahi K (2003) Mater Sci Engg B 103:162

    Article  Google Scholar 

  30. Mroczkowska M, Czeppe T, Nowinski JL, Garbarczyk JE, Wasiucionek M (2008) Solid State Ionics 179:202

    Article  CAS  Google Scholar 

  31. Hruby A, Czech (1972) J Phys B22:1187

    Google Scholar 

  32. Minami T, Shimizu T, Tanaka M (1983) Sol Stat Ion 9–10:577

    Article  Google Scholar 

  33. Matusita K, Sakka S (1979) Phys Chem Glasses 20:81

    CAS  Google Scholar 

  34. Matusita K, Sakka S, Matsui Y (1975) J Mater Sci 10:961

    Article  CAS  Google Scholar 

  35. Ozawa T (1986) J Thermal Anal 31:547

    Article  CAS  Google Scholar 

  36. Dalvi A, Awasthi AM, Bhardwaj S (2008) Solid State ionics. In: Chowdhari BVR et al (eds) Proceedings of 11th Asian Conference on Solid State Ionics, Coimbatore, India, Mcmillan series Narosa, New Delhi, p. 555

  37. Souquet JL (1981) Ann Rev Mater Sci 11:211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Department of Science and Technology, India SERC project SR/FTP/PS-77/2005 and University Grant Commission special assistance program, India. Thanks are also due to Dr. A.M. Awasthi (UGC-DAE CSR, Indore (India)) for suggestions and useful discussions. We sincerely thank Mr. S. Bhardwaj and Dr. N. P. Lalla (UGC-DAE CSR, Indore (India)) for X-Ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Dalvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Dalvi, A. Effect of mixed glass formers on the crystallization kinetics in AgI–Ag2O–V2O5–MoO3 glassy superionic system. Ionics 17, 315–322 (2011). https://doi.org/10.1007/s11581-010-0509-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0509-z

Keywords

Navigation