Skip to main content
Log in

Conductivity studies on LiX–Li2S–Sb2S3–P2S5 (X = LiI or Li3PO4) glassy system

Ionics Aims and scope Submit manuscript

Abstract

New sulfide glasses in the Li2S–Sb2S3–P2S5 system have been prepared by classical quenching technique where glassy domain remains up to 50% molar addition of Li2S and electrical conductivities have been determined by impedance spectroscopy. Room temperature DC conductivity vs Li2S content exhibits two regions implying different conductivity mechanisms. The compositions of low lithium content presented low electronic conductivities close to 0.01 μS/cm at room temperature (due to Sb2S3 semiconducting properties). The compositions of medium lithium content could result to mixed ionic–electronic conductors with predominant ionic conductivity with a maximum close to 1 μS/cm; Arrhenius behavior is found between 25 °C and T g for all glasses, but activation energy is found to be somehow above most similar systems. A comparative study with glasses belonging to the other chalcogenide systems has been undertaken and values of the decoupling index are reported, and in order to validate conductivity data, a circuit equivalent circuit was proposed and fitted parameters were calculated with good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Tatsumisago M (2004) Solid State Ion 175(1–4):13–18

    Article  CAS  Google Scholar 

  2. Huang CC, Hewak DW (2004) Electron Lett 40(14):863–865

    Article  CAS  Google Scholar 

  3. Angell CA (1998) Solid State Ion 105(1–4):15–24

    Article  CAS  Google Scholar 

  4. Malugani JP, Robert G (1980) Solid State Ion 1(5–6):519–523

    Article  CAS  Google Scholar 

  5. Takahara H, Tabuchi M, Takeuchi T, Kageyama H, Ide J, Handa K, Kobayashi Y, Kurisu Y, Kondo S, Kanno R (2004) J Electrochem Soc 151(9):A1309–A1313

    Article  CAS  Google Scholar 

  6. Duclot M, Souquet, JL (2001) J Power Sources 97–98(Sp. Iss.):610–615

    Article  Google Scholar 

  7. Kim Y, Saienga J, Martin SW (2006) J Phys Chem B 110(33):16318–16325

    Article  CAS  Google Scholar 

  8. Saienga J, Kim Y, Campbell B, Martin SW (2005) Solid State Ion 176(13–14):1229–1236

    Article  CAS  Google Scholar 

  9. Yamamoto H, Machida N, Shigematsu T (2004) Solid State Ion 175(1–4):707–711

    Article  CAS  Google Scholar 

  10. Ohtomo T, Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Solid State Ion 176 (31–34):2349–2353

    Article  CAS  Google Scholar 

  11. Ohtomo T, Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146(1–2):715–718

    Article  CAS  Google Scholar 

  12. Machida N, Yamamoto H, Asano S, Shigematsu T (2005) Solid State Ion 176(5–6):473–479

    Article  CAS  Google Scholar 

  13. Vinatier P, Menetrier M, Levasseur A (2003) Phys Chem Glass 44(2):135–142

    CAS  Google Scholar 

  14. Nagamedianova Z, Sánchez E (2002) J Non-Cryst Solids 311(1):1–9

    Article  CAS  Google Scholar 

  15. Nagamedianova Z, Sánchez E (2003) J Non-Cryst Solids 329(1–3):13

    Article  CAS  Google Scholar 

  16. Killedar VV, Rajpure KY, Patil PS, Bhosale CH (1999) Mater Chem Phys 59:237–242

    Article  CAS  Google Scholar 

  17. Sánchez E, Angell CA (1999) Mater Res Soc Symp Proc 548:461–466

    Google Scholar 

  18. Sánchez E, Torres-Martínez L, Angell CA (2001) Bol Soc Esp Ceram Vidr 40(2):125–129

    Google Scholar 

  19. Bunde A, Ingram MD, Russ S (2004) Phys Chem Chem Phys 6(13):3663–3668

    Article  CAS  Google Scholar 

  20. Angell CA (1989) Rev Solid State Sci 3(3–4):465–480

    Google Scholar 

  21. Matsumoto H, Sakaebe H, Tatsumi K (2005) J Power Sources 146(1–2):45–50

    Article  CAS  Google Scholar 

  22. Orazem ME, Agarwal P, García-Rubio LH (1994) J Electroanal Chem 378:51–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSF-CONACyT (35998U), SEP-CONACyT (46919), and program PAICYT-UANL is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamedianova, Z., Hernández, A. & Sánchez, E. Conductivity studies on LiX–Li2S–Sb2S3–P2S5 (X = LiI or Li3PO4) glassy system. Ionics 12, 315–322 (2006). https://doi.org/10.1007/s11581-006-0054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-006-0054-y

Keywords

Navigation