Skip to main content
Log in

Analysis of a variable metric block coordinate method under proximal errors

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

This paper focuses on an inexact block coordinate method designed for nonsmooth optimization, where each block-subproblem is solved by performing a bounded number of steps of a variable metric proximal–gradient method with linesearch. We improve on the existing analysis for this algorithm in the nonconvex setting, showing that the iterates converge to a stationary point of the objective function even when the proximal operator is computed inexactly, according to an implementable inexactness condition. The result is obtained by introducing an appropriate surrogate function that takes into account the inexact evaluation of the proximal operator, and assuming that such function satisfies the Kurdyka–Łojasiewicz inequality. The proof technique employed here may be applied to other new or existing block coordinate methods suited for the same class of optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The micro test image is included in the published article [43], available at https://ieeexplore.ieee.org/document/1199635. The satellite test image can be found in the Matlab package IR Tools, available at http://people.compute.dtu.dk/pcha/IRtools/. The peppers test image can be downloaded from the USC-SIPI Image Database, available at https://sipi.usc.edu/database/.

References

  1. Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971 (2009)

  3. Prato, M., La Camera, A., Bonettini, S., Rebegoldi, S., Bertero, M., Boccacci, P.: A blind deconvolution method for ground based telescopes and Fizeau interferometers. New Astron. 40, 1–13 (2015)

    Article  ADS  Google Scholar 

  4. Bonettini, S.: Inexact block coordinate descent methods with application to the nonnegative matrix factorization. IMA J. Numer. Anal. 31(4), 1431–1452 (2011)

    Article  MathSciNet  Google Scholar 

  5. Pock, T., Sabach, S.: Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems. SIAM J. Optim. 9(4), 1756–1787 (2016)

    MathSciNet  Google Scholar 

  6. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)

    Article  MathSciNet  Google Scholar 

  7. Yang, Y., Pesavento, M., Luo, Z.-Q., Ottersen, B.: Inexact block coordinate descent algorithms for nonsmooth nonconvex optimization. IEEE Trans. Signal Process. 68, 947–961 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chouzenoux, E., Corbineau, M.-C., Pesquet, J.-C., Scrivanti, G.: A variational approach for joint image recovery-segmentation based on spatially varying generalised gaussian models. arXiv:2209.01375 (2022)

  9. Brandoni, D., Porcelli, M., Simoncini, V.: A spectral PALM algorithm for matrix and tensor-train based Dictionary Learning. arXiv:2107.11644 (2021)

  10. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012)

    Article  MathSciNet  Google Scholar 

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. J. Phys. D. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  12. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  13. Grippo, L., Sciandrone, M.: Globally convergent block-coordinate techniques for unconstrained optimization. Optim. Method Softw. 10(4), 587–637 (1999)

    Article  MathSciNet  Google Scholar 

  14. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MathSciNet  Google Scholar 

  15. Powell, M.J.D.: On search directions for minimization algorithms. Math. Program. 4(1), 193–201 (1973)

    Article  MathSciNet  Google Scholar 

  16. Bonettini, S., Loris, I., Porta, F., Prato, M.: Variable metric inexact line-search-based methods for nonsmooth optimization. SIAM J. Optim. 26(2), 891–921 (2016)

    Article  MathSciNet  Google Scholar 

  17. Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  Google Scholar 

  18. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  19. Bonettini, S., Prato, M., Rebegoldi, S.: A block coordinate variable metric linesearch based proximal gradient method. Comput. Optim. Appl. 71(1), 5–52 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chouzenoux, E., Pesquet, J.-C., Repetti, A.: A block coordinate variable metric forward–backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)

    Article  MathSciNet  Google Scholar 

  21. Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for Kurdyka–Łojasiewicz functions and general convergence rates. J. Opt. Theory Appl. 165, 874–900 (2015)

    Article  Google Scholar 

  22. Ochs, P.: Unifying abstract inexact convergence theorems and block coordinate variable metric iPiano. SIAM J. Optim. 29(1), 541–570 (2019)

    Article  MathSciNet  Google Scholar 

  23. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  24. Pierro, A.R.D.: A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans. Med. Imaging 14(1), 132–137 (1995)

    Article  PubMed  Google Scholar 

  25. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  26. Gur, E., Sabach, S., Shtern, S.: Convergent nested alternating minimization algorithms for nonconvex optimization problems. Math. Oper. Res. (2022)

  27. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 128, 321–353 (2011)

    Article  MathSciNet  Google Scholar 

  28. Bonettini, S., Prato, M., Rebegoldi, S.: Convergence of inexact forward-backward algorithms using the forward–backward envelope. SIAM J. Optim. 30(4), 3069–3097 (2020)

    Article  MathSciNet  Google Scholar 

  29. Bonettini, S., Prato, M., Rebegoldi, S.: New convergence results for the inexact variable metric forward-backward method. Appl. Math. Comput. 392, 125719 (2021)

    MathSciNet  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.-B., Wets, M.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  31. Zalinescu, A.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Book  Google Scholar 

  32. Birgin, E.G., Martinez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)

    Article  MathSciNet  Google Scholar 

  33. Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse Probl. 33(5), 055005 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lee, C.-P., Wright, S.J.: Inexact Successive quadratic approximation for regularized optimization. Comput. Optim. Appl. 72(3), 641–674 (2019)

    Article  MathSciNet  Google Scholar 

  35. Repetti, A., Wiaux, Y.: Variable metric forward–backward algorithm for composite minimization problems. SIAM J. Optim. 31(2), 1215–1241 (2020)

    Article  MathSciNet  Google Scholar 

  36. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    Google Scholar 

  37. Perrone, D., Favaro, P.: A clearer picture of total variation blind deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1041–1055 (2016)

    Article  PubMed  Google Scholar 

  38. Rebegoldi, S., Bonettini, S., Prato, M.: Efficient Block Coordinate Methods for Blind Cauchy Denoising. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) Numerical Computations: Theory and Algorithms, pp. 198–211. Springer, Cham (2020)

    Chapter  Google Scholar 

  39. Lantéri, H., Roche, M., Cuevas, O., Aime, C.: A general method to devise maximum likelihood signal restoration multiplicative algorithms with non-negativity constraints. Signal Process. 81(5), 945–974 (2001)

    Article  Google Scholar 

  40. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25(1), 015002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  42. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  Google Scholar 

  43. Willett, R.M., Nowak, R.D.: Platelets: a multiscale approach for recovering edges and surfaces in photon limited medical imaging. IEEE Trans. Med. Imaging 22, 332–350 (2003)

    Article  PubMed  Google Scholar 

Download references

Funding

Simone Rebegoldi is a member of the INdAM research group GNCS. This work was partially supported by INdAM research group GNCS, under the GNCS project CUP_E55F22000270001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Rebegoldi.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Lemma 8

Proof of Lemma 8

Applying the descent lemma [36, Proposition A.24] yields

$$\begin{aligned} f_0(\hat{u}^{(k)})\ge f_0({\tilde{u}}^{(k)}) - \nabla f_0(\hat{u}^{(k)})^T({\tilde{u}}^{(k)}-\hat{u}^{(k)}) -\frac{M}{2} \Vert {\tilde{u}}^{(k)}-\hat{u}^{(k)}\Vert ^2. \end{aligned}$$
(A1)

By setting \(z_i^{(k,\bar{\ell }_i^{(k)})}=x_i^{(k,\bar{\ell }_i^{(k)})}-\alpha _i^{(k,\bar{\ell }_i^{(k)})} (D_i^{(k,\bar{\ell }_i^{(k)})})^{-1}\nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})\), \(\epsilon _i^{(k)}=\epsilon _i^{(k,\bar{\ell }_i^{(k)})}\), and applying some calculus rules for the \(\epsilon _i^{(k)}-\)subdifferential (see [33, Appendix A]), the inexactness condition (20) implies the existence of a vector \(e_i^{(k)}\in {\mathbb {R}}^{n_i}\) such that

$$\begin{aligned} -\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}} D_i^{(k,\bar{\ell }_i^{(k)})}\left( u_i^{(k,\bar{\ell }_i^{(k)})}-z_i^{(k,\bar{\ell }_i^{(k)})} + e_i^{(k)}\right)&\in \partial _{\epsilon _i^{(k)}}f_i(u_i^{(k,\bar{\ell }_i^{(k)})}) \end{aligned}$$
(A2)
$$\begin{aligned} \frac{1}{2\alpha _i^{(k,\bar{\ell }_i^{(k)})}} \Vert e_i^{(k)}\Vert _{D_i^{(k,\bar{\ell }_i^{(k)})}}^2&\le \epsilon _i^{(k)}. \end{aligned}$$
(A3)

By employing Definition 4 with \({{\mathcal {F}}}=f_i\), \(u = \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\), \(z = u_i^{(k,\bar{\ell }_i^{(k)})}\), \(\epsilon =\epsilon _i^{(k)}\), and w given by (A2), we have

$$\begin{aligned} f_i(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})&\ge f_i(u_i^{(k,\bar{\ell }_i^{(k)})})\\&-\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}} \left( u_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\right) ^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \\&-\nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})^T\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \\&-\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}}(e_i^{(k)})^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) -\epsilon _i^{(k)}. \end{aligned}$$

Summing the previous inequality over \(i=1,\ldots ,p\) with (A1) and recalling the definition of the points \(\hat{u}^{(k)}\), \({\tilde{u}}^{(k)}\) leads to

$$\begin{aligned}&f(\hat{u}^{(k)})\ge f({\tilde{u}}^{(k)})- \nabla f_0(\hat{u}^{(k)})^T({\tilde{u}}^{(k)}-\hat{u}^{(k)})-\sum _{i=1}^{p}\nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})^T\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \\&-\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}} \left( u_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\right) ^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \\&-\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}}(e_i^{(k)})^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) -\frac{M}{2} \Vert {\tilde{u}}^{(k)}-\hat{u}^{(k)}\Vert ^2-\sum _{i=1}^{p}\epsilon _i^{(k)}. \end{aligned}$$

By rearranging terms and applying the Cauchy-Schwarz inequality, we get

$$\begin{aligned}&f(\hat{u}^{(k)})\ge f({\tilde{u}}^{(k)})-\sum _{i=1}^{p}\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})-\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&-\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}} \left( u_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\right) ^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \nonumber \\&-\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}}(e_i^{(k)})^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) -\frac{M}{2} \Vert {\tilde{u}}^{(k)}-\hat{u}^{(k)}\Vert ^2-\sum _{i=1}^{p}\epsilon _i^{(k)}. \end{aligned}$$
(A4)

At this point, for all \(i=1,\ldots ,p\), we can write the following chain of inequalities:

$$\begin{aligned}&\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})-\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\le {M}\Vert {\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}^{(k)}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\le {M} \left( \sum _{j=1}^{i-1}\Vert x_j^{(k,L_j^{(k)})}-x_j^{(k,\bar{\ell }_j^{(k)})}\Vert +\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \right) \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\quad +{M}\left( \sum _{j=i+1}^{p}\Vert x_j^{(k)}-x_j^{(k,\bar{\ell }_j^{(k)})}\Vert +\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \right) \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\quad +{M}\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert , \end{aligned}$$

where the first inequality follows by means of Assumption 1(iii) and the second one is obtained by applying the definition of points \({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})},\hat{u}^{(k)}\), the basic inequality \(\sqrt{a+b}\le \sqrt{a}+\sqrt{b}\), and the triangular inequality. We can further proceed as follows

$$\begin{aligned}&\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})-\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&\le {M} \left( \sum _{j=1}^{i-1}\sum _{\ell =\bar{\ell }_j^{(k)}}^{L_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert +\sum _{j=1}^{i-1}\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \right) \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&\quad +{M}\left( \sum _{j=i+1}^{p}\sum _{\ell =0}^{\bar{\ell }_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert +\sum _{j=i+1}^{p}\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \right) \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&\quad +{M}\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&\le {M}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \sum _{j=1}^{p}\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \nonumber \\&\quad +2{M}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \sum _{j=1}^{p}\sum _{\ell =0}^{L_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert \end{aligned}$$
(A5)

where again we have used the triangular inequality to get the first inequality. Summing (A5) over \(i=1,\ldots ,p\) leads to

$$\begin{aligned}&\sum _{i=1}^{p}\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})-\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\le {M}\sum _{i=1}^{p}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \sum _{j=1}^{p}\Vert x_j^{(k,\bar{\ell }_j^{(k)})}-\hat{u}_j^{(k,\bar{\ell }_j^{(k)})}\Vert \\&+2{M}\sum _{i=1}^{p}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \sum _{j=1}^{p}\sum _{\ell =0}^{L_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert . \end{aligned}$$

We can now employ inequalities (22)–(23)–(25) to deduce the following upper bound

$$\begin{aligned}&\sum _{i=1}^{p}\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})-\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \\&\le {M}\alpha _{\max }\mu \sqrt{2\tau \left( 1+\frac{\tau }{2}\right) }\left( \sum _{i=1}^{p}\sqrt{-h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})}\right) ^2\\&\quad +4{M}\alpha _{\max }\mu \sqrt{\tau (1+\tau )}\left( \sum _{i=1}^{p}\sum _{\ell =0}^{L_i^{(k)}-1}\sqrt{-h_i^{(k,\ell )}(u_i^{(k,\ell )})}\right) ^2\\&\le {\tilde{c}}_1\left( \sum _{i=1}^{p}\sum _{\ell =0}^{L_i^{(k)}-1}\sqrt{-h_i^{(k,\ell )}(u_i^{(k,\ell )})}\right) ^2, \end{aligned}$$

where \({\tilde{c}}_1=L\alpha _{\max }\mu \left( 4\sqrt{\tau (1+\tau )}+\sqrt{2\tau \left( 1+\frac{\tau }{2}\right) }\right) \ge 0\). Multiplying and dividing the quantity inside the round brackets by \(\sum _{i=1}^{p}L_i^{(k)}\), applying the Jensen inequality to the function \(\phi (t)=t^2\) and recalling that \(L_i^{(k)}\le L_i\) for all \(k\in {\mathbb {N}}\), \(i=1,\ldots ,p\), allows to obtain

$$\begin{aligned} \sum _{i=1}^{p}\Vert \nabla _i f_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}){} & {} -\nabla _if_0(\hat{u}^{(k)})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\ {}{} & {} \le c_1\sum _{i=1}^{p}\sum _{\ell =0}^{L_i^{(k)}-1}\left( -h_i^{(k,\ell )}(u_i^{(k,\ell )})\right) . \end{aligned}$$
(A6)

where \(c_1={\tilde{c}}_1\sum _{i=1}^{p}L_i\ge 0\). Similarly, we can provide the following upper bound

$$\begin{aligned}&\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}} \left( u_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\right) ^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \nonumber \\&\le \frac{\mu }{\alpha _{\min }}\sum _{i=1}^{p}\Vert u_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \nonumber \\&\le c_2\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \end{aligned}$$
(A7)

where the first inequality follows again from the Cauchy-Schwarz inequality together with \(\alpha _i^{(k,\bar{\ell }_i^{(k)})}\ge \alpha _{\min }\) and \(D_i^{(k,\bar{\ell }_i^{(k)})}\in {\mathcal {M}}_\mu \), the second inequality is due to the application of (23)–(24) and \(c_2=\frac{2\mu ^2\alpha _{\max }}{\alpha _{\min }}\sqrt{\tau (1+\tau )}\ge 0\). Moreover, from relation (A3), we deduce

$$\begin{aligned} \Vert e_i^{(k)}\Vert ^2 \le \mu \Vert e_i^{(k)}\Vert _{D_i^{(k,\bar{\ell }_i^{(k)})}}^2 \le 2\alpha _i^{(k,\bar{\ell }_i^{(k)})}\mu \epsilon _i^{(k)}\le -\alpha _{\max }\mu \tau h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})}). \end{aligned}$$

Then we have

$$\begin{aligned}&\sum _{i=1}^{p}\frac{1}{\alpha _i^{(k,\bar{\ell }_i^{(k)})}}(e_i^{(k)})^TD_i^{(k,\bar{\ell }_i^{(k)})}\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\right) \nonumber \\&\le \frac{\mu }{\alpha _{\min }}\sum _{i=1}^{p}\Vert e_i^{(k)}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-u_i^{(k,\bar{\ell }_i^{(k)})}\Vert \le c_3 \sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \end{aligned}$$
(A8)

where the second inequality follows from (23) and (A8), whereas \(c_3=\frac{\mu ^2\alpha _{\max }\tau }{\alpha _{\min }}\ge 0\).

Finally, plugging (A6)–(A7)–(A8) inside (A4) gives

$$\begin{aligned} f(\hat{u}^{(k)})&\ge f({\tilde{u}}^{(k)})-c_1\sum _{i=1}^{p}\sum _{\ell =0}^{L_i^{(k)}-1}\left( -h_i^{(k,\ell )}(u_i^{(k,\ell )})\right) -c_2\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \\&\quad -c_3 \sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) -\frac{{M}\alpha _{\max }\mu \tau }{2}\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \\&\quad -\frac{\tau }{2}\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) . \end{aligned}$$

Then the thesis follows by setting \(c=c_1+c_2+c_3+\frac{{M}\alpha _{\max }\mu \tau }{2}+\frac{\tau }{2}\ge 0\). \(\square \)

Appendix B Proof of Lemma 9

Proof of Lemma 9

Using the descent lemma, we obtain

$$\begin{aligned} f_0(\hat{u}^{(k)})\le f_0( x^{(k)})+\nabla f_0( x^{(k)})^T(\hat{u}^{(k)}- x^{(k)})+\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2. \end{aligned}$$

We sum \(\sum _{i=1}^{p}f_i(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})\) to both sides and rearrange terms as follows:

$$\begin{aligned} f(\hat{u}^{(k)})&= f( x^{(k)})+\sum _{i=1}^{p}\left( f_i(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})-f_i(x_i^{(k)})+\nabla _if_0( x^{(k)})^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)})\right) \\&\quad +\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2\\&= f( x^{(k)})+\sum _{i=1}^{p}\left( f_i(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})-f_i(x_i^{(k)})+\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)})\right) \\&\quad +\sum _{i=1}^{p}(\nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}))^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)})+\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2\\&= f( x^{(k)})+\sum _{i=1}^{p}\left( f_i(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})-f_i(x_i^{(k,\bar{\ell }_i^{(k)})})+\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})})\right) \\&\quad +\sum _{i=1}^{p}\left( f_i(x_i^{(k,\bar{\ell }_i^{(k)})})-f_i(x_i^{(k)})+\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})^T(x_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{{(k)}})\right) \\&\quad +\sum _{i=1}^{p}(\nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}))^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)})+\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2. \end{aligned}$$

By adding the quantity \(\sum _{i=1}^{p}(2\alpha _i^{(k,\bar{\ell }_i^{(k)})})^{-1}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert _{D_i^{(k,\bar{\ell }_i^{(k)})}}^2\), and summing and subtracting the term \(\sum _{i=1}^{p}(2\alpha _i^{(k,\bar{\ell }_i^{(k)})})^{-1}\Vert x_i^{(k)}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert _{D_i^{(k,\bar{\ell }_i^{(k)})}}^2\) to the right-hand side of the previous inequality, we directly get

$$\begin{aligned} f(\hat{u}^{(k)})&\le f( x^{(k)})+\sum _{i=1}^{p}h_i^{(k,\bar{\ell }_i^{(k)})}(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})+\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(x_i^{(k)})\right) \nonumber \\&\quad +\sum _{i=1}^{p}(\nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}))^T(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)})\nonumber \\&\quad +\sum _{i=1}^{p}\frac{1}{2\alpha _i^{(k,\bar{\ell }_i^{(k)})}}\Vert x_i^{(k)}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert _{D_i^{(k,\bar{\ell }_i^{(k)})}}^2+\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2. \end{aligned}$$
(B9)

By setting \(u=x_i^{(k,\bar{\ell }_i^{(k)})}\) and \(u=x_i^{(k)}\) in (15), respectively, we obtain

$$\begin{aligned} h_i^{(k,\bar{\ell }_i^{(k)})}(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})\le 0, \quad -h_i ^{(k,\bar{\ell }_i^{(k)})}(x_i^{(k)})\le -h_i^{(k,\bar{\ell }_i^{(k)})}(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}). \end{aligned}$$
(B10)

Plugging condition (18) inside the previous inequality leads to

$$\begin{aligned} h_i^{(k,\bar{\ell }_i^{(k)})}(\hat{u}_i^{(k,\bar{\ell }_i^{(k)})})\le 0, \quad -h_i ^{(k,\bar{\ell }_i^{(k)})}(x_i^{(k)})\le -\left( 1+\frac{\tau }{2}\right) h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})}). \end{aligned}$$
(B11)

By inserting (B11) inside (B9), we can continue as follows

$$\begin{aligned} f(\hat{u}^{(k)})&\le f( x^{(k)})+\left( 1+\frac{\tau }{2}\right) \sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \\&\quad +\sum _{i=1}^{p}\left( \nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})\right) ^T \left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\right) \\&\quad +\sum _{i=1}^{p}\frac{\mu }{2\alpha _{\min }}\Vert x_i^{(k)}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert ^2+\frac{{M}}{2}\Vert \hat{u}^{(k)}- x^{(k)}\Vert ^2. \end{aligned}$$

A direct application of the triangular inequality yields

$$\begin{aligned} f(\hat{u}^{(k)})&\le f( x^{(k)})+\left( 1+\frac{\tau }{2}\right) \sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \nonumber \\&\quad +\sum _{i=1}^{p}\left( \nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})\right) ^T \left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\right) \nonumber \\&\quad +\frac{\mu }{2\alpha _{\min }}\sum _{i=1}^{p}\left( \sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{{(k,\ell )}}\Vert \right) ^2\nonumber \\&\quad +\frac{{M}}{2}\sum _{i=1}^{p}\left( \sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \right) ^2. \end{aligned}$$
(B12)

We now provide an upper bound for the third addend in the above inequality, proceeding as follows

$$\begin{aligned}&\left( \nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})\right) ^T\left( \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\right) \nonumber \\&\le \Vert \nabla _if_0(x^{(k)})-\nabla _if_0({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})})\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\Vert \nonumber \\&\le {M}\Vert x^{(k)}-{\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\Vert \nonumber \\&\le {M}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\Vert {\left( \sum _{j=1}^{i-1}\Vert x_j^{(k)}-x_j^{(k,L_j^{(k)})}\Vert +\Vert x_i^{(k)}-x_i^{(k,\bar{\ell }_i^{(k)})}\Vert \right) }\nonumber \\&\le {M}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\Vert {\left( \sum _{j=1}^{i-1}\sum _{\ell = 0}^{L_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert +\sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{(k,\ell )}\Vert \right) }\nonumber \\&{\le {M}\Vert \hat{u}_i^{(k,\bar{\ell }_i^{(k)})}-x_i^{(k)}\Vert \sum _{j=1}^{i}\sum _{\ell = 0}^{L_j^{(k)}-1}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert }\nonumber \\&\le {M}\left( \sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \right) \sum _{j=1}^{p}\sum _{\ell =0}^{{L_j^{(k)}-1}}\Vert x_j^{(k,\ell +1)}-x_j^{(k,\ell )}\Vert \end{aligned}$$
(B13)

where the third inequality follows from the definition of \({\tilde{x}}_i^{(k,\bar{\ell }_i^{(k)})}\) in (12), whereas we have used the triangular inequality, \(\bar{\ell }_i^{(k)}\le L_i^{(k)}\), and \(i\le p\), to get the last three inequalities. If we sum (B13) over \(i=1,\ldots ,p\) and apply it to (B12), we come to

$$\begin{aligned} f(\hat{u}^{(k)})&\le f( x^{(k)})+\left( 1+\frac{\tau }{2}\right) \sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right) \nonumber \\&\quad +{M}\left( \sum _{i=1}^p\sum _{\ell =0}^{{L_i^{(k)}-1}}\Vert x_i^{(k,\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \right) ^2\nonumber \\&\quad +\frac{\mu }{2\alpha _{\min }}\sum _{i=1}^{p}\left( \sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{{(k,\ell )}}\Vert \right) ^2\nonumber \\&\quad +\frac{{M}}{2}\sum _{i=1}^{p}\left( \sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert \right) ^2. \end{aligned}$$
(B14)

By combining Lemma 5 with Lemma 7, we obtain the following limits as \(k\rightarrow \infty \)

$$\begin{aligned} \lim _{k\rightarrow \infty }\sum _{i=1}^{p}\left( -h_i^{(k,\bar{\ell }_i^{(k)})}(u_i^{(k,\bar{\ell }_i^{(k)})})\right)&=0\\ \lim _{k\rightarrow \infty }\sum _{\ell =0}^{\bar{\ell }_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert&=0\\ \lim _{k\rightarrow \infty }\sum _{\ell =0}^{L_i^{(k)}-1}\Vert x_i^{(k,\ell +1)}-x_i^{(k,\ell )}\Vert +\Vert x_i^{(k,\bar{\ell }_i^{(k)})}-\hat{u}_i^{(k,\bar{\ell }_i^{(k)})}\Vert&=0. \end{aligned}$$

Hence inequality (B14) yields the thesis. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebegoldi, S. Analysis of a variable metric block coordinate method under proximal errors. Ann Univ Ferrara 70, 23–61 (2024). https://doi.org/10.1007/s11565-022-00456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-022-00456-z

Keywords

Mathematics Subject Classification

Navigation