Skip to main content
Log in

A paradox in Hele-Shaw displacements

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The Saffman–Taylor instability occurs when a less viscous Stokes fluid is displacing a more viscous one, in a rectangular Hele-Shaw cell. We study the case when all surface tensions on the interfaces are zero. Consider N liquid-layers with constant viscosities, inserted between the two initial fluids. The corresponding growth constants become infinite with increasing wave numbers, even if N is very large. On the contrary, a single intermediate liquid with a suitable variable viscosity gives us an almost stable flow. We compute the total amount of intermediate liquid used in both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  2. Chen, C-Yao, Huang, C.-W., Wang, L.-C., Miranda, José A.: Controlling radial fingering patterns in miscible confined flows. Phys. Rev. E 82, 056308 (2010)

    Article  Google Scholar 

  3. Daripa, P., Pasa, G.: On the growth rate of three-layer Hele-Shaw flows-variable and constant viscosity cases. Int. J. Eng. Sci. 43, 877–884 (2004)

    Article  MathSciNet  Google Scholar 

  4. Daripa, P., Pasa, G.: New bounds for stabilizing Hele-Shaw flows. Appl. Math. Lett. 18, 12930–1303 (2005)

    Article  MathSciNet  Google Scholar 

  5. Daripa, P., Pasa, G.: A simple derivation of an upper bound in the presence of viscosity gradient in three-layer Hele-Shaw flows. J. Stat. Mech. P 01014 (2006)

  6. Daripa, P.: Hydrodynamic stability of multi-layer Hele-Shaw flows. J. Stat. Mech. Art. No. P12005 (2008)

  7. Daripa, P., Ding, X.: Universal stability properties for multi-layer Hele-Shaw flows and applications to instability control. SIAM J. Appl. Math. 72, 1667–1685 (2012)

    Article  MathSciNet  Google Scholar 

  8. Daripa, P., Ding, X.: A numerical study of instability control for the design of an optimal policy of enhanced oil recovery by tertiary displacement processes. Tran. Porous Media 93, 675–703 (2012)

    Article  MathSciNet  Google Scholar 

  9. Daripa, P.: Some useful upper bounds for the selection of optimal profiles. Phys. A Stat. Mech. Appl. 391, 4065–4069 (2012)

    Article  Google Scholar 

  10. Diaz, E.O., Alvaez-Lacalle, A., Carvalho, M.S., Miranda, J.A.: Minimization of viscous fluid fingering: a variational scheme for optimal flow rates. Phys. Rev. Lett. 109, 144502 (2012)

    Article  Google Scholar 

  11. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1953)

    Google Scholar 

  12. Gilje, E.: Simulations of viscous instabilities in miscible and immiscible displacement, Master Thesis in Petroleum Technology. University of Bergen (2008)

  13. Gorell, S.B., Homsy, G.M.: A theory of the optimal policy of oil recovery by secondary displacement process. SIAM J. Appl. Math. 43, 79–98 (1983)

    Article  MathSciNet  Google Scholar 

  14. Gorell, S.B., Homsy, G.M.: A theory for the most stable variable viscosity profile in graded mobility displacement process. AIChE J. 31, 1498–1503 (1985)

    Article  Google Scholar 

  15. Hele-Shaw, H.S.: Investigations of the nature of surface resistence of water and of streamline motion under certain experimental conditions. Inst. Naval Archit. Trans. 40, 21–46 (1898)

    Google Scholar 

  16. Homsy, G.M.: Viscous fingering in porous media. Ann. Rev. Fluid Mech. 19, 271–311 (1987)

    Article  Google Scholar 

  17. Al-Housseiny, T.T., Tsai, P.A., Stone, H.A.: Control of interfacial instabilities using flow geometry. Nat. Phys. Lett. 8, 747–750 (2012)

    Article  Google Scholar 

  18. Al-Housseiny, T.T., Stone, H.A.: Controlling viscous fingering in Hele-Shaw cells. Phys. Fluids 25, 092102 (2013)

    Article  Google Scholar 

  19. Lamb, H.: Hydrodynamics. Dower Publications, New York (1933)

    MATH  Google Scholar 

  20. Loggia, D., Rakotomalala, N., Salin, D., Yortsos, Y.C.: The effect of mobility gradients on viscous instabilities in miscible flows in porous media. Phys. Fluids 11, 740–742 (1999)

    Article  Google Scholar 

  21. Mungan, N.: Improved waterflooding through mobility control. Canad J. Chem. Eng. 49, 32–37 (1971)

    Article  Google Scholar 

  22. Saffman, P.G.: Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 73–94 (1986)

    Article  MathSciNet  Google Scholar 

  23. Saffman, P.G., Taylor, G.I.: The penetration of a fluid in a porous medium or Helle-Shaw cell containing a more viscous fluid. Proc. R. Soc. A 245, 312–329 (1958)

    MATH  Google Scholar 

  24. Shah, G., Schecter, R. (eds.): Improved Oil Recovery by Surfactants and Polymer Flooding. Academic Press, New York (1977)

    Google Scholar 

  25. Slobod, R.L., Lestz, S.J.: Use of a graded viscosity zone to reduce fingering in miscible phase displacements. Prod. Mon. 24, 12–19 (1960)

    Google Scholar 

  26. Sudaryanto, B., Yortsos, Y.C.: Optimization of Displacements in Porous Media Using Rate Control, Society of Petroleum Engineers, Annual Technical Conference and Exhibition, 30 September-3 October. Louisiana, New Orleans (2001)

  27. Talon, L., Goyal, N., Meiburg, E.: Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1. Linear stability analysis. J. Fluid Mech 721, 268–294 (2013)

    Article  MathSciNet  Google Scholar 

  28. Tanveer, S.: Evolution of Hele-Shaw interface for small surface tension. Philos. Trans. R. Soc. A (1993). https://doi.org/10.1098/rsta.1993.0049

    Article  MATH  Google Scholar 

  29. Tanveer, S.: Surprises in viscous fingering. J. Fluid Mech. 409, 273–368 (2000)

    Article  MathSciNet  Google Scholar 

  30. U. S. Geological Survey, Applications of SWEAT to select Variable-Density and Viscosity Problems, U. S Department of the Interior, Specific Investigations Report 5028 (2009)

  31. Uzoigwe, A.C., Scanlon, F.C., Jewett, R.L.: Improvement in polymer flooding: the programmed slug and the polymer-conserving agent. J. Petrol. Tech. 26, 33–41 (1974)

    Article  Google Scholar 

  32. Xu, J.-J.: Interfacial Wave Theory of Pattern Formation in Solidification. Springer Series in Synergetics, Sproner (2017)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks to the referees, for the useful suggestions and very carefully reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gelu Paşa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paşa, G. A paradox in Hele-Shaw displacements. Ann Univ Ferrara 66, 99–111 (2020). https://doi.org/10.1007/s11565-020-00339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-020-00339-1

Keywords

Mathematics Subject Classification

Navigation