Skip to main content
Log in

Estimates of anisotropic Sobolev spaces with mixed norms for the Stokes system in a half-space

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We are concerned with the non-stationary Stokes system with non-homogeneous external force and non-zero initial data in \({\mathbb {R}}^n_+ \times (0,T)\). We obtain new estimates of solutions including pressure in terms of mixed anisotropic Sobolev spaces. As an application, some anisotropic Sobolev estimates are presented for weak solutions of the Navier–Stokes equations in a half-space in dimension three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic press Inc., Amsterdam (2003)

  2. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic press Inc, Boston (1988)

    MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choe, H., Lewis, J.L.: On the singular set in the Navier–Stokes equations. J. Funct. Anal. 175(2), 348–369 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escauriaza, L., Seregin, G., Šverák, V.: \(L^{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness, (Russian) Uspekhi Mat. Nauk 58, (2003), no. 2(350), 3–44; translation. Russian Math. Surveys 58(2), 211–250 (2003)

  7. Fabes, E.B., Jones, B.F., Rivière, N.M.: The initial value problem for the Navier–Stokes equations with data in \(L^{p}\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giga, M., Giga, Y., Sohr, H.: \(L^p\) estimates for the Stokes system. Lect. Notes Math. 1540, 55–67 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gustafson, S., Kang, K., Tsai, T.: Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J. Differ. Equ. 226(2), 594–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gustafson, S., Kang, K., Tsai, T.: Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations. Commun. Math. Phys. 273(1), 161–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen (German). Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jawerth, B.: The trace of Sobolev and Besov spaces if \(0<p<1\). Stud. Math. 62(1), 65–71 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Jerison, D., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, K.: On boundary regularity of the Navier–Stokes equations. Commun. Partial. Differ. Equ. 29(7–8), 955–987 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koch, H., Solonnikov, V.A.: \(L_p\)-estimates of the first-order derivatives of solutions to the nonstationary Stokes problem. In: Nonlinear Problems in Mathematical Physics and Related Topics I, Springer International Mathematical Series vol. 1, pp. 203–218 (2002)

  18. Ladyzenskaja, O.A.: Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185 (1967) (Russian)

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic type. Translations of Mathematical Monographs, vol. 23. Am. Math. Soc., Providence, RI (1968)

  20. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934). (French)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lizorkin, P.I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv. Akad. Nauk SSSR Ser. Math. 34, 218–247 (1970) (Russian)

  22. Maremonti, P., Solonnikov, V.A.: Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces with mixed norm. J. Math. Sci. 87(5), 3859–3877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prodi, G.: Un teorema di unicita per le equazioni di Navier–Stokes. Ann Math. Pura Appl. 48(4), 173–182 (1959). (Italian)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Scheffer, V.: Boundary regularity for the Navier–Stokes equations in a half-space. Commun. Math. Phys. 85(2), 275–299 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seregin, G.A.: Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary. J. Math. Fluid Mech. 4(1), 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Solonnikov, V.: Estimates for solutions of nonstationary Navier–Stokes equations. Boundary value problems of mathematical physics and related questions in the theory of functions, \(7\). Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LoMI) 38, 153–231 (1973).; translated in J. Soviet Math., 8, (1977), 467–529 (Russian)

  29. Solonnikov, V.: Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator. Uspekhi Mat. Nauk, 58, no. 2(350), 123–156 (2003); translation. Russian Math. Surveys 58(2), 331–365 (2003) (Russian)

  30. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  31. Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  33. Ukai, S.: A solution formula for the Stokes equation in \({{\mathbb{R}}^n}_+\). Commun. Pure Appl. Math. 40(5), 611–621 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T.-K. Chang’s work was partially supported by NRF20151009350 and K. Kang’s work was partially supported by NRF-2012R1A1A2001373 and NRF-2014R1A2A1A11051161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongkeun Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Kang, K. Estimates of anisotropic Sobolev spaces with mixed norms for the Stokes system in a half-space. Ann Univ Ferrara 64, 47–82 (2018). https://doi.org/10.1007/s11565-017-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-017-0287-x

Keywords

Mathematics Subject Classification

Navigation