Skip to main content

Advertisement

Log in

Explicit div-curl inequalities in bounded and unbounded domains of \({{\mathbb {R}}}^3\)

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We give a constructive proof of some functional inequalities related to the div and curl operators in bounded and unbounded domains of \({{\mathbb {R}}}^3\). Our new innovation consists in giving explicit constants in several geometric configurations. These inequalities are of a first use in solving div-curl systems and vector potential problems arising in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \({ R}^n\). J. Math. Pures Appl. (9) 73(6), 579–606 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the \(n\)-dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76(1), 55–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amrouche, Ch., Seloula, N.-H.: \(L^p\)-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23(1), 37–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arar, N., Boulmezaoud, T.Z.: Eigenfunctions of a weighted Laplace operator in the whole space. J. Math. Anal. Appl. 400(1), 161–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auchmuty, G.: Divergence \(L^2\)-coercivity inequalities. Numer. Funct. Anal. Optim. 27(5–6), 499–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boulmezaoud, T.Z.: On the existence of non-linear Beltrami fields. Comptes Rendus de l’Académie des Sciences. Série I. Mathématiques 328(5), 442 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Boulmezaoud, T.Z.: Vector potentials in the half-space of \({\mathbb{R}}^3\). C. R. Acad. Sci. Paris Sér. I Math. 332(8), 711–716 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulmezaoud, T.Z.: On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25(5), 373–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boulmezaoud, T.Z.: On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26(8), 633–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boulmezaoud, T.Z.: Inverted finite elements: a new method for solving elliptic problems in unbounded domains. M2AN. Math. Model. Numer. Anal. 39(1), 109–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boulmezaoud, T.Z.: Étude des champs de Beltrami dans des domaines de R3 bornés et non-bornés et applications en astrophysique. Ph.D. Thesis, Université Pierre et Marie Curie (Paris VI), Paris., Janvier (1999)

  13. Boulmezaoud, T.Z., Maday, Y., Amari, T.: On the linear force-free fields in bounded and unbounded three-dimensional domains. M2AN Math. Modell. Numer. Anal. 33(2), 359–393 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

  15. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12(4), 365–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Desvillettes, L., Villani, C.: On a variant of Korn’s inequality arising in statistical mechanics. ESAIM Control Optim. Calc. Var. 8:603–619 (electronic) (2002) (A tribute to J. L. Lions)

  17. Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Dunod, Paris. Travaux et Recherches Mathématiques, No. 21 (1972)

  18. Filonov, N.: On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator. Algebra i Analiz 16(2), 172–176 (2004)

    MathSciNet  Google Scholar 

  19. Friedrichs, K.O.: Differential forms on Riemannian manifolds. Commun. Pure Appl. Math. 8, 551–590 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. USA 37, 48–50 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Girault, V.: The divergence, curl and Stokes operators in exterior domains of \({\bf R}^3\). In: Recent Developments in Theoretical Fluid Mechanics (Paseky, 1992), Pitman Res. Notes Math. Ser., vol. 291, pp. 34–77. Longman Scientific and Technical, Harlow (1993)

  22. Girault, V.: The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces. Differ. Integral Equ. 7(2), 535–570 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Girault, V., Giroire, J., Sequeira, A.: Formulation variationnelle en fonction courant-tourbillon du problème de Stokes extérieur dans des espaces de Sobolev à poids. C. R. Acad. Sci. Paris Sér. I Math. 313(8), 499–502 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  25. Girault, V., Sequeira, A.: A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Rational Mech. Anal. 114(4), 313–333 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giroire, J.: Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie, Paris (1987)

  27. Gobert, J.: Sur une inégalité de coercivité. J. Math. Anal. Appl. 36, 518–528 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 24, Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

  29. Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Jochmann, F.: A compactness result for vector fields with divergence and curl in \(L^q(\Omega )\) involving mixed boundary conditions. Appl. Anal. 66(1–2), 189–203 (1997)

    Article  MathSciNet  Google Scholar 

  31. Kuhn, P., Pauly, D.: Regularity results for generalized electro-magnetic problems. Analysis (Munich) 30(3), 225–252 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Mitrea, M.: Dirichlet integrals and Gaffney–Friedrichs inequalities in convex domains. Forum Math. 13(4), 531–567 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  34. Nédélec, J.-C: Acoustic and electromagnetic equations, vol. 144, Applied Mathematical Sciences. Springer, New York (2001) (Integral representations for harmonic problems)

  35. Pauly, D.: Low frequency asymptotics for time-harmonic generalized Maxwell’s equations in nonsmooth exterior domains. Adv. Math. Sci. Appl. 16(2), 591–622 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Pauly, D.: Generalized electro-magneto statics in nonsmooth exterior domains. Analysis (Munich) 27(4), 425–464 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Pauly, D.: On polynomial and exponential decay of eigen-solutions to exterior boundary value problems for the generalized time-harmonic Maxwell system. Asymptot. Anal. 79(1–2), 133–160 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Pauly, D.: On constants in Maxwell inequalities for bounded and convex domains. J. Math. Sci. (N.Y.) 210(6), 787–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pauly, D.: On Maxwell’s and Poincaré’s constants. Discrete Contin. Dyn. Syst. Ser. S 8(3), 607–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pauly, D., Repin, S.: Functional a posteriori error estimates for elliptic problems in exterior domains. J. Math. Sci. (N. Y.) 162(3), 393–406 (2009) (Problems in mathematical analysis. No. 42)

  41. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5(286–292), 1960 (1960)

    MATH  Google Scholar 

  42. Pflüger, K.: Semilinear elliptic problems in unbounded domains; solutions in weighted sobolev spaces. preprint (1995)

  43. Picard, R.: Randwertaufgaben in der verallgemeinerten Potentialtheorie. Math. Methods Appl. Sci. 3(2), 218–228 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Picard, R.: On the boundary value problems of electro- and magnetostatics. Proc. Roy. Soc. Edinburgh Sect. A 92(1–2), 165–174 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187(2), 151–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Picard, R.: On the low frequency asymptotics in electromagnetic theory. J. Reine Angew. Math. 354, 50–73 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Picard, R.: Some decomposition theorems and their application to nonlinear potential theory and Hodge theory. Math. Methods Appl. Sci. 12(1), 35–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Picard, R.: On a selfadjoint realization of curl and some of its applications. Ricerche Mat. 47(1), 153–180 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Picard, R., Weck, N., Witsch, K.-J.: Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich) 21(3), 231–263 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Pólya, G.: Remarks on the foregoing paper. J. Math. Phys. 31, 55–57 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  51. Saranen, J.: On an inequality of Friedrichs. Math. Scand. 51(2), 310–322 (1983). (1982)

    MathSciNet  MATH  Google Scholar 

  52. Saranen, J., Witsch, K.J.: Exterior boundary value problems for elliptic equations. Ann. Acad. Sci. Fenn. Ser. A I Math. 8(1), 3–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  53. Weber, C.: Regularity theorems for Maxwell’s equations. Math. Methods Appl. Sci. 3(4), 523–536 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Weber, Ch.: A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci. 2(1), 12–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weck, N.: Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46, 410–437 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  56. Witsch, K.J.: A remark on a compactness result in electromagnetic theory. Math. Methods Appl. Sci. 16(2), 123–129 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for careful and thorough reading of this manuscript, and for helpful and valuable comments, which significantly contributed to improving the quality of this publication.

The third author, N. Kerdid, gratefully acknowledge the support of the National Plan for Science, Technology and Information (Maarifah), King Abdulaziz City for Science and Technology, KSA, award number 12-MAT2996-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahar Zamene Boulmezaoud.

Appendix

Appendix

1.1 Proof of Lemma 3

The proof we give here is inspired by [2, 10] and [52]. We detail it in the case \({\varOmega }={{\mathbb {R}}}^3\). The case \({\varOmega }={{\mathbb {R}}}_+^3\) can be treated exactly in the same manner. By density of \({{\mathscr {D}}}({{\mathbb {R}}}^3)\) in \( H^1_{\theta }({{\mathbb {R}}}^3)\), we can consider \(v \in {{\mathscr {D}}}({{\mathbb {R}}}^3)\). We have

$$\begin{aligned} \int _{{{\mathbb {R}}}^3} \varrho ^{2\theta } |v|^2 dx = \int _{{{\mathbb {S}}^2}}\left( \int _{0}^{+\infty } r^2 (r^2+\epsilon ^2)^{{\theta }} |v(r, \sigma )|^2 dr\right) d\sigma , \end{aligned}$$

where \({{\mathbb {S}}}^2= \{ {{{x}}}\in {{\mathbb {R}}}^3 \,|\,|{{{x}}}|=1\}\). Let

$$\begin{aligned} \varrho (r) = r^2 (r^2+\epsilon ^2)^{{\theta }+1/2}. \end{aligned}$$

Then,

$$\begin{aligned} \frac{\rho '(r)}{r^2 (r^2+\epsilon ^2)^{{\theta }}} = 2 \frac{\sqrt{r^2+\epsilon ^2}}{r} + (2 \theta + 1) \frac{r}{\sqrt{r^2+\epsilon ^2}} \ge k_1, \end{aligned}$$

with

$$\begin{aligned} k_1 = \min _{ x\ge 1} 2 x + \frac{(2 \theta + 1)}{x} = \left\{ \begin{array}{ll} 2 \theta + 3 &{} \text{ if } \theta \le \displaystyle { \frac{1}{2}}, \; \\ \displaystyle { 4 \sqrt{ \theta + \frac{1}{2}}} &{} \text{ if } \theta \ge \displaystyle { \frac{1}{2}}. \end{array} \right. \end{aligned}$$

For \(\sigma \in {{\mathbb {S}}}^2\), integration by parts and Cauchy–Schwarz inequality give

$$\begin{aligned} \displaystyle { \int _{0}^{+\infty } \varrho '(r) |v(r, \sigma )|^2 dr}= & {} - 2 \displaystyle { \int _{0}^{+\infty } \varrho (r) v(r, \sigma ) \frac{\partial v}{\partial r}(r, \sigma ) dr} \\\le & {} 2 \displaystyle { \left( \int _{0}^{+\infty } r^2 (r^2+\epsilon ^2)^{{\theta }} |v(r, \sigma )|^2 dr \right) ^{1/2}} \\&\times \displaystyle { \left( \int _{0}^{+\infty } r^2 (r^2+\epsilon ^2)^{{\theta +1}} \left| \frac{\partial v}{\partial r}(r, \sigma )\right| ^2 dr \right) ^{1/2}}, \end{aligned}$$

(since \(\varrho (0)=0\)). It follows that

$$\begin{aligned} \int _{0}^{+\infty } r^2 (r^2+\epsilon ^2)^{{\theta }} |v(r, \sigma )|^2 dr \le \frac{4}{k_1^2} \int _{0}^{+\infty } r^2 (r^2+\epsilon ^2)^{{\theta }+1} |\frac{\partial v}{\partial r}(r, \sigma )|^2 dr, \end{aligned}$$

which ends the proof of (61). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulmezaoud, T.Z., Kaliche, K. & Kerdid, N. Explicit div-curl inequalities in bounded and unbounded domains of \({{\mathbb {R}}}^3\) . Ann Univ Ferrara 63, 249–276 (2017). https://doi.org/10.1007/s11565-016-0266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-016-0266-7

Keywords

Mathematics Subject Classification

Navigation