Skip to main content
Log in

Volumetric analysis of intracranial vessels: a novel tool for evaluation of cerebral vasospasm

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Together with other diagnostic modalities, computed tomography angiography (CTA) is commonly used to indicate endovascular vasospasm treatment after subarachnoid hemorrhage (SAH), despite the fact that objective, user-independent parameters for evaluation of CTA are lacking. This exploratory study was designed to investigate whether quantification of vasospasm by automated volumetric analysis of the middle cerebral artery M1 segment from CTA data could be used as an objective parameter to indicate endovascular vasospasm treatment.

Methods

We retrospectively identified SAH patients who underwent transcranial Doppler sonography (TCD), CTA, and CT perfusion (CTP), with or without subsequent endovascular treatment. We determined vessel volume/vessel length of the M1 segments from CTA data and used receiver operating characteristic curve analysis to determine the optimal threshold of vessel volume to predict vasospasm requiring endovascular treatment. In addition, blinded investigators independently analyzed TCD, CTA, and CTP data.

Results

Of 45 CTA examinations with corresponding CTP and TCD examinations (24 SAH patients), nine indicated the need for endovascular vasospasm treatment during examination. In our patients, vessel volume < 5.8 µL/mm was moderately sensitive but fairly specific to detect vasospasm requiring endovascular treatment (sensitivity, 67%; specificity, 78%; negative predictive value (NPV), 89%; positive predictive value (PPV), 46%). For CTA, CTP, and TCD, we found NPVs of 96%, 92%, and 89%, PPVs of 40%, 35%, and 35%, sensitivities of 89%, 78%, and 67%, and specificities of 67%, 64%, and 69%, respectively.

Conclusion

Vessel volumes could provide a new objective parameter for the interpretation of CTA data and could thereby improve multimodal assessment of vasospasm in SAH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linn FH, Rinkel GJ, Algra A, van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27(4):625–629

    Article  CAS  PubMed  Google Scholar 

  2. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, Macdonald RL, Diringer MN, Broderick JP, Dreier JP, Roos YB (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41(10):2391–2395. https://doi.org/10.1161/STROKEAHA.110.589275

    Article  PubMed  Google Scholar 

  3. Francoeur CL, Mayer SA (2016) Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care 20(1):277. https://doi.org/10.1186/s13054-016-1447-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10(1):44–58. https://doi.org/10.1038/nrneurol.2013.246

    Article  CAS  PubMed  Google Scholar 

  5. Dorsch N (2011) A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl 110(Pt 1):5–6. https://doi.org/10.1007/978-3-7091-0353-1_1

    Article  PubMed  Google Scholar 

  6. Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, Bruder N, Connolly ES Jr, Citerio G, Gress D, Hanggi D, Hoh BL, Lanzino G, Le Roux P, Rabinstein A, Schmutzhard E, Stocchetti N, Suarez JI, Treggiari M, Tseng MY, Vergouwen MD, Wolf S, Zipfel G, Neurocritical Care S (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15(2):211–240. https://doi.org/10.1007/s12028-011-9605-9

    Article  PubMed  Google Scholar 

  7. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 43(6):1711–1737. https://doi.org/10.1161/STR.0b013e3182587839

    Article  PubMed  Google Scholar 

  8. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G, European Stroke O (2013) European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 35(2):93–112. https://doi.org/10.1159/000346087

    Article  PubMed  Google Scholar 

  9. Westermaier T, Pham M, Stetter C, Willner N, Solymosi L, Ernestus RI, Vince GH, Kunze E (2014) Value of transcranial Doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocrit Care 20(3):406–412. https://doi.org/10.1007/s12028-013-9896-0

    Article  PubMed  Google Scholar 

  10. Lysakowski C, Walder B, Costanza MC, Tramer MR (2001) Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke 32(10):2292–2298

    Article  CAS  PubMed  Google Scholar 

  11. Chaudhary SR, Ko N, Dillon WP, Yu MB, Liu S, Criqui GI, Higashida RT, Smith WS, Wintermark M (2008) Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: a comparison with digital subtraction angiography. Cerebrovasc Dis 25(1–2):144–150. https://doi.org/10.1159/000112325

    Article  PubMed  Google Scholar 

  12. Otawara Y, Ogasawara K, Ogawa A, Sasaki M, Takahashi K (2002) Evaluation of vasospasm after subarachnoid hemorrhage by use of multislice computed tomographic angiography. Neurosurgery 51(4):939–942 (discussion 942–933)

    PubMed  Google Scholar 

  13. Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27(1):26–34

    CAS  PubMed  Google Scholar 

  14. Huang AP, Tsai JC, Kuo LT, Lee CW, Lai HS, Tsai LK, Huang SJ, Chen CM, Chen YS, Chuang HY, Wintermark M (2014) Clinical application of perfusion computed tomography in neurosurgery. J Neurosurg 120(2):473–488. https://doi.org/10.3171/2013.10.JNS13103

    Article  PubMed  Google Scholar 

  15. Neulen A, Pantel T, Kosterhon M, Kirschner S, Brockmann MA, Kantelhardt SR, Giese A, Thal SC (2017) A segmentation-based volumetric approach to localize and quantify cerebral vasospasm based on tomographic imaging data. PLoS ONE 12(2):e0172010. https://doi.org/10.1371/journal.pone.0172010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R (1996) ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 53(4):309–315

    Article  CAS  PubMed  Google Scholar 

  17. Neulen A, Greke C, Prokesch E, Konig J, Wertheimer D, Giese A (2013) Image guidance to improve reliability and data integrity of transcranial Doppler sonography. Clin Neurol Neurosurg 115(8):1382–1388. https://doi.org/10.1016/j.clineuro.2012.12.025

    Article  PubMed  Google Scholar 

  18. Greke C, Neulen A, Kantelhardt SR, Birkenmayer A, Vollmer FC, Thiemann I, Giese A (2013) Image-guided transcranial Doppler sonography for monitoring of defined segments of intracranial arteries. J Neurosurg Anesthesiol 25(1):55–61. https://doi.org/10.1097/ANA.0b013e31826b3d55

    Article  PubMed  Google Scholar 

  19. Neulen A, Prokesch E, Stein M, Konig J, Giese A (2016) Image-guided transcranial Doppler sonography for monitoring of vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 145:14–18. https://doi.org/10.1016/j.clineuro.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  20. Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, De Villiers JC (1988) A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry 51(11):1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6(1):1–9

    Article  CAS  PubMed  Google Scholar 

  22. Neulen A, Kosterhon M, Pantel T, Kirschner S, Goetz H, Brockmann MA, Kantelhardt SR, Thal SC (2018) A volumetric method for quantification of cerebral vasospasm in a murine model of subarachnoid hemorrhage. J Vis Exp (Pending Publication) e57997 (In-press). https://doi.org/10.3791/57997

  23. Wintermark M, Dillon WP, Smith WS, Lau BC, Chaudhary S, Liu S, Yu M, Fitch M, Chien JD, Higashida RT, Ko NU (2008) Visual grading system for vasospasm based on perfusion CT imaging: comparisons with conventional angiography and quantitative perfusion CT. Cerebrovasc Dis 26(2):163–170. https://doi.org/10.1159/000139664

    Article  PubMed  Google Scholar 

  24. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  CAS  PubMed  Google Scholar 

  25. Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, Humphrey PR, Lang DA, Nelson R, Richards P (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298(6674):636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD, Collaborators S (2014) Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol 13(7):666–675. https://doi.org/10.1016/S1474-4422(14)70084-5

    Article  CAS  PubMed  Google Scholar 

  27. Dorhout Mees SM, Algra A, Vandertop WP, van Kooten F, Kuijsten HA, Boiten J, van Oostenbrugge RJ, Al-Shahi Salman R, Lavados PM, Rinkel GJ, van den Bergh WM, Group M-S (2012) Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): a randomised placebo-controlled trial. Lancet 380(9836):44–49. https://doi.org/10.1016/s0140-6736(12)60724-7

    Article  PubMed  Google Scholar 

  28. Zubkov YN, Nikiforov BM, Shustin VA (1984) Balloon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH. Acta Neurochir 70(1–2):65–79

    Article  CAS  PubMed  Google Scholar 

  29. Brothers MF, Holgate RC (1990) Intracranial angioplasty for treatment of vasospasm after subarachnoid hemorrhage: technique and modifications to improve branch access. AJNR Am J Neuroradiol 11(2):239–247

    CAS  PubMed  Google Scholar 

  30. Higashida RT, Halbach VV, Dowd CF, Dormandy B, Bell J, Hieshima GB (1992) Intravascular balloon dilatation therapy for intracranial arterial vasospasm: patient selection, technique, and clinical results. Neurosurg Rev 15(2):89–95

    Article  CAS  PubMed  Google Scholar 

  31. Aburto-Murrieta Y, Marquez-Romero JM, Bonifacio-Delgadillo D, Lopez I, Hernandez-Curiel B (2012) Endovascular treatment: balloon angioplasty versus nimodipine intra-arterial for medically refractory cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Vasc Endovasc Surg 46(6):460–465. https://doi.org/10.1177/1538574412454585

    Article  Google Scholar 

  32. Hoh BL, Ogilvy CS (2005) Endovascular treatment of cerebral vasospasm: transluminal balloon angioplasty, intra-arterial papaverine, and intra-arterial nicardipine. Neurosurg Clin N Am 16(3):501–516, vi. https://doi.org/10.1016/j.nec.2005.04.004

    Article  PubMed  Google Scholar 

  33. Biondi A, Ricciardi GK, Puybasset L, Abdennour L, Longo M, Chiras J, Van Effenterre R (2004) Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results. AJNR Am J Neuroradiol 25(6):1067–1076

    PubMed  Google Scholar 

  34. Turowski B, Schramm P (2015) An appeal to standardize CT- and MR-perfusion. Clin Neuroradiol 25(Suppl 2):205–210. https://doi.org/10.1007/s00062-015-0444-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this study are part of the doctoral thesis of T. Pantel, presented to the Medical Faculty of the Johannes Gutenberg University of Mainz. The study was supported by a grant of the Medical Center of the Johannes Gutenberg University Mainz (Stufe I Foerderung, grant to A.N.). The funder had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven R. Kantelhardt.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neulen, A., Pantel, T., Dieter, A. et al. Volumetric analysis of intracranial vessels: a novel tool for evaluation of cerebral vasospasm. Int J CARS 14, 157–167 (2019). https://doi.org/10.1007/s11548-018-1844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1844-1

Keywords

Navigation