Skip to main content

Advertisement

Log in

Automatic gallbladder and gallstone regions segmentation in ultrasound image

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

As gallbladder diseases including gallstone and cholecystitis are mainly diagnosed by using ultra-sonographic examinations, we propose a novel method to segment the gallbladder and gallstones in ultrasound images.

Methods

The method is divided into five steps. Firstly, a modified Otsu algorithm is combined with the anisotropic diffusion to reduce speckle noise and enhance image contrast. The Otsu algorithm separates distinctly the weak edge regions from the central region of the gallbladder. Secondly, a global morphology filtering algorithm is adopted for acquiring the fine gallbladder region. Thirdly, a parameter-adaptive pulse-coupled neural network (PA-PCNN) is employed to obtain the high-intensity regions including gallstones. Fourthly, a modified region-growing algorithm is used to eliminate physicians’ labeled regions and avoid over-segmentation of gallstones. It also has good self-adaptability within the growth cycle in light of the specified growing and terminating conditions. Fifthly, the smoothing contours of the detected gallbladder and gallstones are obtained by the locally weighted regression smoothing (LOESS).

Results

We test the proposed method on the clinical data from Gansu Provincial Hospital of China and obtain encouraging results. For the gallbladder and gallstones, average similarity percent of contours (EVA) containing metrics dice’s similarity , overlap fraction and overlap value is 86.01 and 79.81%, respectively; position error is 1.7675 and 0.5414 mm, respectively; runtime is 4.2211 and 0.6603 s, respectively. Our method then achieves competitive performance compared with the state-of-the-art methods.

Conclusions

The proposed method is potential to assist physicians for diagnosing the gallbladder disease rapidly and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hareendranathan AR, Mabee M, Punithakumar K, Noga M, Jaremko JL (2016) A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia. Int J Comput Assist Radiol Surg 11(1):31–42. doi:10.1007/s11548-015-1239-5

    Article  PubMed  Google Scholar 

  2. Nobel JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010. doi:10.1109/TMI.2006.877092

    Article  Google Scholar 

  3. Gupta A, Gosain B, Kaushal S (2010) A comparison of two algorithms for automated stone detection in clinical B-mode ultrasound images of the abdomen. Int J Clin Monit Comput 24(5):341–362. doi:10.1007/s10877-010-9254-0

    Article  Google Scholar 

  4. Yang X, Ye X, Slabaugh G (2015) Multilabel region classification and semantic linking for colon segmentation in CT colonography. IEEE Trans B Biomed Eng 62(3):948–959. doi:10.1109/TBME.2014.2374355

    Article  Google Scholar 

  5. Hu S, Hoffman E, Reinhardt JM (2001) Automatic lung segmentation for accurate quantitation of volumetric X-RAY CT images. IEEE Trans Med Imaging 20(6):490–498. doi:10.1109/42.929615

    Article  CAS  PubMed  Google Scholar 

  6. Dandin O, Teomete U, Osman O, Tulum G, Ergin T, Sabuncuoglu M (2016) Automated segmentation of the injured spleen. Int J Comput Assist Radiol Surg 11(3):351–368. doi:10.1007/s11548-015-1288-9

    Article  PubMed  Google Scholar 

  7. Grau V, Mewes A, Alcaniz M, Kikinis R, Warfield SK (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458. doi:10.1109/TMI.2004.824224

    Article  CAS  PubMed  Google Scholar 

  8. Ma Y, Wang L, Ma Y, Dong M, Du S, Sun X (2016) Novel automatic segmentation of left ventricle in cardiac cine MR images. Int J Comput Assist Radiol Surg 11(11):1951–1964. doi:10.1007/s11548-016-1429-9

    Article  PubMed  Google Scholar 

  9. Faghih Roohi S, Aghaeizadeh Zoroofi R (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J Comput Assist Radiol Surg 8(3):335–351. doi:10.1007/s11548-012-0787-1

    Article  PubMed  Google Scholar 

  10. Ciecholewski M (2010) Gallbladder boundary segmentation from ultrasound images using active contour model. In: Lecture notes in computer science-LNCS. doi:10.1007/978-3-642-15381-5_8

  11. Ciecholewski M, Chochołowicz J (2013) Gallbladder shape extraction from ultrasound images using active contour models. Comput Biol Med 43(12):2238–2255. doi:10.1016/j.compbiomed.2013.10.009

    Article  PubMed  Google Scholar 

  12. Xie W, Ma Y, Shi B, Wang Z (2013) Gallstone segmentation and extraction from ultrasound images using level set model. In: IEEE biosignals and biorobotics conference, Rio de Janeiro. doi:10.1109/BRC.2013.6487452

  13. Jain A, Agrawal M, Gupta A, Khandelwal V (2008) A novel approach to video matting using automated scribbling by motion analysis. In: Proceedings annual international IEEE virtual environment human–computer. Interfaces measurement systems VECIMS, pp 25–30. doi:10.1109/VECIMS.2008.4592747

  14. Levin A, Lischinski D, Weiss Y (2006) A closed form solution to natural image matting. In: Proceedings Annual International IEEE computer society conference computer vision pattern recognition. CVPR, pp 61–68. doi:10.1109/CVPR.2006.18

  15. Agnihotri S, Loomba H, Gupta A and Khandelwal V (2009) Automated segmentation of gallstones in ultrasound images. In: Proceedings annual international IEEE computer science information technology ICCSIT, pp 56–59. doi:10.1109/ICCSIT.2009.5234996

  16. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. doi:10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  17. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Anal 12(7):629–639. doi:10.1109/34.56205

    Article  Google Scholar 

  18. Sarti A, Corsi C, Mazzini E, Lamberti C (2005) Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans Ultrason Ferroelectr Freq Control 52(6):947–960. doi:10.1109/TUFFC.2005.1504017

    Article  PubMed  Google Scholar 

  19. Liao PS, Tse-Sheng Ch, Pau-Choo Ch (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17(5):713–727

    Google Scholar 

  20. Musrrat A, Ch W, Pant M (2013) Multi-level image thresholding by synergetic differential evolution. Appl Soft Comput 17(3):1–11. doi:10.1016/j.asoc.2013.11.018

    Google Scholar 

  21. Jan F, Usman I, Agha S (2012) Iris localization in frontal eye images for less constrained iris recognition systems. Digit Signal Process 22(6):971–986. doi:10.1016/j.dsp.2012.06.001

    Article  Google Scholar 

  22. Johnson J, Padgett M (1999) PCNN models and applications. IEEE Trans on Neural Netw 10(3):480–498. doi:10.1109/72.761706

    Article  CAS  Google Scholar 

  23. Zhan K, Shi J, Wang H, Xie Y, Li Q (2016) Computational mechanisms of pulse-coupled neural networks: a comprehensive review. Arch Comput Methods Eng 20:1–16. doi:10.1007/s11831-016-9182-3

    Article  Google Scholar 

  24. Chen Y, Park SK, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified PCNN for image segmentation. IEEE Trans Neural Netw 22(6):880–892. doi:10.1109/TNN.2011.2128880

    Article  PubMed  Google Scholar 

  25. Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans on Neural Netw 20(12):1980–1986. doi:10.1109/TNN.2009.2030585

    Article  Google Scholar 

  26. Mirghasemi S, Rayudu R, Zhang MJ (2013) A new image segmentation algorithm based on modified seeded region growing and particle swarm optimization. In: 28th international conferences image vision computer New Zealand IVCNZ, pp: 382-387. doi:10.1109/IVCNZ.2013.6727045

  27. Yu P, Qin AK, Clausi DA (2012) Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Trans Geosci and Remote Sens 50(4):1302–1317. doi:10.1109/TGRS.2011.2164085

    Article  Google Scholar 

  28. Cleveland W, Devlin S (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610. doi:10.1080/01621459.1988.10478639

    Article  Google Scholar 

  29. Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. CVPR 97:66. doi:10.1109/CVPR.1997.609299

    Google Scholar 

  30. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369. doi:10.1109/83.661186

    Article  CAS  PubMed  Google Scholar 

  31. Cohen LD (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218. doi:10.1016/1049-9660(91)90028-N

    Article  Google Scholar 

  32. Anbeek P, Vincken K, VanOsch M, Bisschops R, VanderGrond J (2004) Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 21(3):1037–1044. doi:10.1016/j.neuroimage.2003.10.012

    Article  PubMed  Google Scholar 

  33. Chalana V, Kim Y (1997) A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging 16(5):642–652. doi:10.1109/42.640755

    Article  CAS  PubMed  Google Scholar 

  34. Khan S, Bennamoun M, Sohel F, Togneri R (2016) Automatic shadow detection and removal from a single image. IEEE Trans Pattern Anal Mach Intell 38(3):431–446. doi:10.1109/TPAMI.2015.2462355

    Article  PubMed  Google Scholar 

  35. Mulleti S, Seelamantula C (2015) Ellipse fitting using the finite rate of innovation sampling principle. IEEE Trans Image Process 25(3):1451–1464. doi:10.1109/TIP.2015.2511580

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the reviewers for their valuable comments, which further improved the quality of the paper. We also thank Gansu Provincial Hospital for providing the dataset. This study was funded National Natural Science Foundation of China (grant numbers 61175012 & 61201422), Natural Science Foundation of Gansu Province of China (grant number 148RJZA044) and Youth Foundation of Lanzhou Jiaotong University of China (grant number 2014005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., Ma, Y., Ma, Y. et al. Automatic gallbladder and gallstone regions segmentation in ultrasound image. Int J CARS 12, 553–568 (2017). https://doi.org/10.1007/s11548-016-1515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1515-z

Keywords

Navigation