Skip to main content
Log in

Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials

Accuratezza diagnostica dell’angiografia coronarica con tomografia computerizzata a 64 strati in una ampia popolazione di pazienti non rivascolarizzati: dati di registro e review dei trials multicentrici

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to evaluate the diagnostic accuracy of computed tomography coronary angiography (CT-CA) for the detection of significant coronary artery stenosis (≥50% lumen reduction) compared with conventional coronary angiography (CCA) in a registry and to review major multicentre trials.

Materials and methods

A total of 1,372 patients (882 men, 490 women; mean age 59.3±11.9 years) in sinus rhythm were studied with CT-CA (64-slice technology) and CCA. The diagnostic accuracy of CT-CA was evaluated against quantitative CCA as a reference standard for coronary artery stenosis. Positive and negative likelihood ratios and inter- and intraobserver agreement were calculated.

Results

The prevalence of disease was 53%. CCA demonstrated the absence of significant coronary artery disease in 46.6% (639/1372), single-vessel disease in 24.7% (337/1372) and multivessel disease in 28.9% (396/1372) of patients. In per-patient analysis sensitivity, specificity and positive and negative predictive value of CT-CA were 99% [confidence interval (CI) 97–99], 92% (CI 89–94), 94% (CI 91–95) and 99% (CI 97–99), respectively. Per-patient and per-segment likelihood ratios (LR+=12.4 and LR−=0.011; LR+=18.3 and LR−=0.064, respectively), were good. Inter- and intraobserver variability was 0.78 and 0.85, respectively.

Conclusions

CT-CA is a reliable diagnostic modality both in terms of sensitivity and negative predictive value. Differences in trial results are also due to the different parameters used for patient inclusion.

Riassunto

Obiettivo

Obiettivo di questo lavoro è stato valutare l’accuratezza diagnostica dell’angiografia coronarica non invasiva con tomografia computerizzata (CT-CA) a 64 strati nell’individuazione delle stenosi coronariche significative (riduzione del lume coronarico ≥50%) confrontata con la coronarografia convenzionale (CAG) in un registro e revisionare i risultati dei trials multicentrici.

Materiali e metodi

Sono stati studiati 1372 pazienti (882 uomini, 490 donne, età media 59,3±11,9 anni) in ritmo cardiaco sinusale con CT-CA (tecnologia 64 strati) e CAG. La CT-CA è stata eseguita secondo i protocolli comunemente utilizzati. L’accuratezza diagnostica è stata calcolata utilizzando la CAG come standard di riferimento. Sono state calcolate l’accuratezza diagnostica, i likelihood ratio positivo e negativo (LR+ e LR−) e la variabilità inter- ed intra-osservatore.

Risultati

La prevalenza di malattia nella popolazione era del 53%. Il 46,6% (639/1372) mostravano coronarie indenni o con lesioni che determinavano stenosi <50%, il 24,7% (337/1372) mostrano malattia critica di un solo vaso, ed il 28,9% (396/1372) dei pazienti mostrava coronaropatia critica multivasale. Nell’analisi per paziente la sensibilità, specificità, valore predittivo positivo e negativo della CT-CA sono risultati 99% (intervallo di confidenza [IC] 97–99), 92% (IC 89–94), 94% (IC 91–95), 99% (IC 97–99), rispettivamente. I likelihood ratio per paziente (LR+=12,4 e LR−=0,011) e per segmento (LR+=18,3 e LR−=0,064), sono risultati ottimali. Le variabilità inter- ed intra-osservatore sono risultate 0,78 e 0,85, rispettivamente.

Conclusioni

La CT-CA è una metodica diagnostica affidabile sia per l’elevata sensibilità che per l’elevato valore predittivo negativo. I risultati dei trials sono variabili anche alla luce dei parametri principali di inclusione utilizzati.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Nieman K, Oudkerk M, Rensig BJ et al (2001) Coronary angiography with multislice computed tomography. Lancet 357:599–603

    Article  CAS  PubMed  Google Scholar 

  2. Nieman K, Cademartiri F, Lemos PA et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  3. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  4. Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132

    Article  PubMed  Google Scholar 

  5. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) Highresolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  6. Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med (Torino) 110:16–41

    Google Scholar 

  7. Cademartiri F, Luccichenti G, Marano R et al (2003) Spiral CT-angiography with one, four, and sixteen slice scanners. Technical note. Radiol Med (Torino) 106:269–283

    Google Scholar 

  8. Cademartiri F, Luccichenti G, Marano R et al (2003) Non-invasive angiography of the coronary arteries with multislice computed tomography: state of the art and future prospects. Radiol Med (Torino) 106:284–296

    CAS  Google Scholar 

  9. Achenbach S, Giesler T, Ropers D et al (2001) Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 103:2535–2538

    CAS  PubMed  Google Scholar 

  10. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-andshoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80

    Article  PubMed  Google Scholar 

  11. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137

    Article  CAS  PubMed  Google Scholar 

  12. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437

    Article  PubMed  Google Scholar 

  13. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430

    Article  PubMed  Google Scholar 

  14. Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  15. Hendel RC, Patel MR, Kramer CM et al (2008) ACCF/ACR/SCCT/SCMR/ASNC/NAS CI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  Google Scholar 

  16. Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556

    Article  PubMed  Google Scholar 

  17. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  18. Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123

    Article  PubMed  Google Scholar 

  19. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64- multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  20. Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828

    Article  PubMed  Google Scholar 

  21. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64- slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  22. Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041

    Article  PubMed  Google Scholar 

  23. Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050

    Article  PubMed  Google Scholar 

  24. Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823

    Article  PubMed  Google Scholar 

  25. Cademartiri F, van der Lugt A, Luccichenti G et al (2002) Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr 26:598–607

    Article  PubMed  Google Scholar 

  26. Cademartiri F, Luccichenti G, Marano R et al (2004) Use of saline chaser in the intravenous administration of contrast material in non-invasive coronary angiography with 16-row multislice computed tomography. Radiol Med (Torino) 107:497–505

    Google Scholar 

  27. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    CAS  PubMed  Google Scholar 

  28. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenosis. N Engl J Med 345:1863–1869

    Article  CAS  PubMed  Google Scholar 

  29. Cademartiri F, Mollet NR, Lemos PA et al (2005) Impact of coronary calcium score on diagnostic accuracy for the detection of significant coronary stenosis with multislice computed tomography angiography. Am J Cardiol 95:1225–1227

    Article  CAS  PubMed  Google Scholar 

  30. Cademartiri F, Runza G, Mollet NR et al (2005) Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography. Radiol Med (Torino) 110:42–51

    Google Scholar 

  31. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  32. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenosis. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  33. Pugliese F, Hunink MGM, Gruszczynska K et al (2009) Learning Curve for Coronary CT Angiography: What Constitutes Sufficient Training? (2009) Radiology (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cademartiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffei, E., Palumbo, A., Martini, C. et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials. Radiol med 115, 368–384 (2010). https://doi.org/10.1007/s11547-009-0492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0492-5

Keywords

Parole chiave

Navigation