Skip to main content

Advertisement

Log in

Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There is evidence showing that vertical transmission of dengue virus exists in Aedes mosquitoes. In this paper, we propose a deterministic dengue model with vertical transmission in mosquitoes by including aquatic mosquitoes (eggs, larvae and pupae), adult mosquitoes (susceptible, exposed and infectious) and human hosts (susceptible, exposed, infectious and recovered). We first analyze the existence and stability of disease-free equilibria, calculate the basic reproduction number and discuss the existence of the disease-endemic equilibrium. Then, we study the impact of vertical transmission of the virus in mosquitoes on the spread dynamics of dengue. We also use the model to simulate the reported infected human data from the 2014 dengue outbreak in Guangdong Province, China, carry out sensitivity analysis of the basic reproduction number in terms of the model parameters, and seek for effective control measures for the transmission of dengue virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams B, Boots M (2010) How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2:1–10

    Article  Google Scholar 

  • Andraud M, Hens N, Beutels P (2013) A simple periodic-forced model for dengue fitted to incidence data in Singapore. Math Biosci 244:22–28

    Article  MathSciNet  Google Scholar 

  • Atkinson MP, Zheng S, Alphey N, Alphey LS, Coleman PG, Wein LM (2007) Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci USA 104(22):9540–9545

    Article  Google Scholar 

  • Bai L, Morton LC, Liu Q (2013) Climate change and mosquito-borne diseases in China: a review. Global Health 9:10

    Article  Google Scholar 

  • Bartley LM, Donnelly CA, Garnett GP (2002) The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 96:387–397

    Article  Google Scholar 

  • Buckner EA, Alto BW, Lounibos LP (2013) Vertical transmission of Key West Dengue-1 virus by Aedes aegypti and Aedes albopictus (Diptera: culicidae) mosquitoes from Florida. J Med Entomol 50(6):1291–1297

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2016) Dengue, http://www.cdc.gov/Dengue/. Page last updated: January 19, 2016

  • Chao DL, Longini IM Jr, Halloran ME (2013) The effects of vector movement and distribution in a mathematical model of dengue transmission. PLoS ONE 8(10):e76044

    Article  Google Scholar 

  • Chen B, Liu Q (2015) Dengue fever in China. Lancet 385:1621–1622

    Article  Google Scholar 

  • Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P (2017) The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou. PLoS Negl Trop Dis 11(6):e0005701

    Article  Google Scholar 

  • Chowell G, Fuentes R, Olea A, Aguilera X, Nesse H, Hyman JM (2013) The basic reproduction number \(R_0\) and effectiveness of reactive interventions during dengue epidemics: the 2002 dengue outbreak in Easter Island, Chile. Math Biosci Eng 10:1455–1474

    Article  MathSciNet  Google Scholar 

  • Coutinho FAB, Burattini M, Lopez L, Massad E (2006) Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bull Math Biol 68:2263–2282

    Article  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (1990) On the definition and the computation of the basic reproduction ratio \(R_{0}\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7:873–885

    Article  Google Scholar 

  • Esteva L, Vargas C (2000) Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math Biosci 167:51–64

    Article  Google Scholar 

  • Favier C, Schmit D, Graf CDMM, Cazelles B, Degallier N, Mondet B, Dubois MA (2005) Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc R Soc B 272(1568):1171–1177

    Article  Google Scholar 

  • Feng Z, Velasco-Hernandez JX (1997) Competitive exclusion in a vector-host model for the dengue fever. J Math Biol 35:523–544

    Article  MathSciNet  Google Scholar 

  • Focks DA, Daniels E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53:489–506

    Article  Google Scholar 

  • Guangdong Meteorological Service (GMS) (2013) The climatic characteristics of Guangdong Province, http://www.grmc.gov.cn/qxgk/tjsj/201310/t20131022_21888.html. Accessed October (2013)

  • Guangdong Meteorological Service (GMS) (2016) The climatic characteristics of Guangdong Province in September 2014, http://www.grmc.gov.cn/qxgk/tjsj/201410/t20141015_23375.html. Accessed October (2016)

  • Guangdong Meteorological Service (GMS) (2016) The climatic characteristics of Guangdong Province in November 2014, http://www.grmc.gov.cn/qxgk/tjsj/201411/t20141103_23407.html. Accessed October 2016

  • Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465

    Article  Google Scholar 

  • Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  Google Scholar 

  • Health Department of Guangdong Province (HDGP) (2014) The report on dengue of Guangdong Province (Dec. 8, 2014), http://www.gdwst.gov.cn/a/yiqingxx/2014120812627.html

  • Health Department of Guangdong Province (HDGP) (2017) Reported infectious diseases of Guangdong Province, http://www.gdwst.gov.cn/a/yiqingxx/. Accessed November 2017

  • Hull B, Tikasingh E, De Souza M, Martinez R (1984) Natural transovarial transmission of dengue 4 virus in Aedes aegypti in Trinidad. Am J Trop Med Hyg 33:1248–1250

    Article  Google Scholar 

  • Katri P (2010) Modeling the transmission dynamics of the dengue virus, Ph.D. Thesis, University of Miami. Open Access Dissertations. http://scholarlyrepository.miami.edu/oa_dissertations/417

  • Kow CY, Koon LL, Yin PF (2001) Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by typespecific PCR. J Med Entomol 38:475–479

    Article  Google Scholar 

  • Li M, Sun G, Yakob L, Zhu H, Jin Z, Zhang W (2016) The driving force for 2014 dengue outbreak in Guangdong, China. PLoS ONE 11(11):e0166211

    Article  Google Scholar 

  • Monath T, Heinz FX (1996) Flaviviruses. In: Fields BN et al (eds) Virology. Lippincott-Raven, Philadelphia, pp 961–1034

    Google Scholar 

  • Pherez FM (2007) Factors affecting the emergence and prevalence of vector borne infections (VBI) and the role of vertical transmission (VT). J Vector Borne Dis 44:157–163

    Google Scholar 

  • Pinho STR, Ferreira CP, Esteva L (2010) Modelling the dynamics of dengue real epidemics. Phil Trans R Soc A 368:5679–5693

    Article  MathSciNet  Google Scholar 

  • Rigau-Pérez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vance Vorndam A (1998) Dengue and dengue haemorrhagic fever. Lancet 352:971–977

    Article  Google Scholar 

  • Robert MA, Christofferson RC, Silva NJB, Vasquez C, Mores CN, Wearing HJ (2016) Modeling mosquito-borne disease spread in U.S. urbanized areas: the case of dengue in Miami. PLoS ONE 11(8):e0161365

    Article  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entnmol 37:89–101

    Article  Google Scholar 

  • Shen S-Q, Wei H-X, Fu Y-H (2015) Multiple source of infection and potential endemic characteristics of the large outbreak of dengue in Guangdong in 2014. Sci Rep 5:16913

    Article  Google Scholar 

  • Statistics Bureau of Guangdong Province (SBGP) (2013) The annual report of economy and social development in Guangdong Province in 2013. http://www.gdstats.gov.cn/tjzl/tjgb/201403/t20140305_139764.html. Accessed October 2013

  • Statistics Bureau of Guangdong Province (SBGP) (2014) Guangdong statistical yearbook. China Statistics Press, Beijing

    Google Scholar 

  • Stoddard ST, Wearing HJ, Reiner RC (2014) Long-term and seasonal dynamics of Dengue in Iquitos, Peru. PLoS Negl Trop Dis 8(7):e3003

    Article  Google Scholar 

  • Tang B, Xiao Y, Tang S, Wu J (2016) Modelling weekly vector control against dengue in the Guangdong Province of China. J Theoret Biol 410:65–76

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  Google Scholar 

  • Wearing HJ, Rohani P (2006) Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci USA 103:11802–11807

    Article  Google Scholar 

  • World Health Organization (WHO) (2018) Dengue and severe dengue, http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 2 Feb 2018

  • Wu J, Lun Z, James AA, Chen X (2010) Review: dengue fever in mainland China. Am J Trop Med Hyg 83(3):664–671

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Additional information

This work was partially supported by NSF grant DMS-1412454, NSFC Grants Nos. 11771168 and 11501498, and a start-up grant from Yuncheng University (YQ-2016004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Chen, J., Feng, X. et al. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China. Bull Math Biol 80, 2633–2651 (2018). https://doi.org/10.1007/s11538-018-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0480-9

Keywords

Navigation