Skip to main content
Log in

Functional Characterization of Oscillatory and Excitable Media

  • SPECIAL ISSUE ARTICLE
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cardiac and neural systems share common features of intrinsic oscillation in some cells as well as the ability to propagate excitation. One theoretical approach to study such systems is to develop realistic models for the tissue. This involves first developing detailed ionic “Hodgkin–Huxley”-type models of individual cells and then connecting the individual cells via synaptic and gap junctions in realistic geometries. An alternative approach is to characterize tissue in terms of functional properties such as phase resetting curves and restitution curves. Using simple models based on one-dimensional difference equations, the measured functional curves can be used to predict, analyze, and interpret nonlinear dynamical phenomena. This approach offers the prospects of providing simplified descriptions that offer insight into the experimental and clinical cardiac dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Neuroscience papers generally use the term Type 1, but since we have used “Type” to characterize topology, we use “Class” to distinguish unimodal and bimodal resetting curves.

References

  • Arnol’d VI (1965) Small denominators. I. Mappings of the circumference onto itself. Transl Am Math Soc 46:213–284

    MATH  Google Scholar 

  • Arnold VI, Levi M (1983) Geometrical methods in the theory of ordinary differential equations, vol 18. Springer, New York

    Book  MATH  Google Scholar 

  • Billette J (1976) Preceding His-atrial interval as a determinant of atrioventricular nodal conduction time in the human and rabbit heart. Am J Cardiol 38(7):889–896

    Article  Google Scholar 

  • Cherry EM, Fenton FH (2004) Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. Am J Physiol Heart C 286(6):H2332–H2341

    Article  Google Scholar 

  • Constantino J, Hu Y, Trayanova NA (2012) A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. Prog Biophys Mol Biol 110(2–3):372–379

  • Costantini O, Hohnloser SH, Kirk MM, Lerman BB, Baker JH, Sethuraman B, Dettmer MM, Rosenbaum DS (2009) The ABCD (Alternans Before Cardioverter Defibrillator) trial strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol 53(6):471–479

    Article  Google Scholar 

  • Courtemanche M, Glass L, Keener JP (1993) Instabilities of a propagating pulse in a ring of excitable media. Phys Rev Lett 70(14):2182

    Article  Google Scholar 

  • Decherd GM, Ruskin A (1946) The mechanism of the Wenckebach type of AV block. Br Heart J 8(1):6

    Article  Google Scholar 

  • Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang C, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338(6111):1202–1205

    Article  Google Scholar 

  • Ermentrout GB, Glass L, Oldeman BE (2012) The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation. Neural Comput 24(12):3111–3125

    Article  MATH  MathSciNet  Google Scholar 

  • Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phys 19(1):25–52

    Article  MATH  MathSciNet  Google Scholar 

  • Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8(1):20–47

    Article  MATH  MathSciNet  Google Scholar 

  • Glass L, Guevara MR, Bélair J, Shrier A (1984) Global bifurcations of a periodically forced biological oscillator. Phys Rev A 29(3):1348–1357

    Article  MathSciNet  Google Scholar 

  • Glass L, Guevara MR, Shrier A (1987) Universal bifurcations and the classification of cardiac arrhythmias. Ann NY Acad Sci 504(1):168–178

    Article  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Glass L, Sun J (1994) Periodic forcing of a limit-cycle oscillator: fixed points, Arnold tongues, and the global organization of bifurcations. Phys Rev E 50(6):5077–5084

    Article  Google Scholar 

  • González H, Arce H, Guevara MR (2008) Phase resetting, phase locking, and bistability in the periodically driven saline oscillator: experiment and model. Phys Rev E 78(3):036217 (13 pages)

  • Guevara MR (1991) Iteration of the human atrioventricular (AV) nodal recovery curve predicts many rhythms of AV block. In: Theory of heart. Springer, Berlin, pp 313–358

  • Guevara MR, Glass L (1982) Phase locking, periodic doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14:1–23

    Article  MATH  MathSciNet  Google Scholar 

  • Guevara MR, Glass L, Shrier A (1981) Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1353

    Article  Google Scholar 

  • Guevara MR, Ward G, Shrier A, Glass L (1984) Electrical alternans and period-doubling bifurcations. In: IEEE computers in cardiology. IEEE Computer Society Press, Los Alamitos, CA, pp 167–170

  • Hoppensteadt F, Keener JP (1982) Phase locking of biological clocks. J Math Biol 15(3):339–349

    Article  MATH  MathSciNet  Google Scholar 

  • Hunter P, Chapman T, Coveney PV, De Bono B, Diaz V, Fenner J, Frangi AF, Harris P, Hose R, Kohl P et al (2013) A vision and strategy for the virtual physiological human: 2012 update. Interface Focus 3:20130004 (11 pages)

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  • Karma A (1994) Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4:461–472

    Article  Google Scholar 

  • Keener JP (1981) On cardiac arrythmias: AV conduction block. J Math Biol 12(2):215–225

    Article  MATH  MathSciNet  Google Scholar 

  • Keener JP, Glass L (1984) Global bifurcations of a periodically forced nonlinear oscillator. J Math Biol 21(2):175–190

    Article  MATH  MathSciNet  Google Scholar 

  • Keller E (1967) A mathematical description of biological clocks. Biosystems 1(4):279–284

    Article  Google Scholar 

  • Krogh-Madsen T, Butera R, Ermentrout GB, Glass L (2012) Phase resetting neural oscillators: topological theory versus the real world. In: Phase response curves in neuroscience. Springer, Berlin, pp 33–51

  • Landahl H, Griffeath D (1971) A mathematical model for first degree block and the Wenckebach phenomenon. Bull Math Biophys 33(1):27–38

    Article  Google Scholar 

  • Levinson N (1949) A second order differential equation with singular solutions. Ann Math 50(1):127–153

    Article  MathSciNet  Google Scholar 

  • Levy MN, Martin PJ, Edelstein J, Goldberg LB (1974) The AV nodal Wenckebach phenomenon as a positive feedback mechanism. Prog Cardiovasc Dis 16:601–613

  • Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82(10):985–992

    Article  MATH  MathSciNet  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Macmillan, New York

    Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  Google Scholar 

  • Mines GK (1913) On dynamic equilibrium in the heart. J Physiol 46:350–383

    Google Scholar 

  • Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50(6):1645–1662

    Article  MATH  MathSciNet  Google Scholar 

  • Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in the cardiac action potentials. J Appl Physiol 25:191–196

    Article  Google Scholar 

  • Pavlidis T (1967) A model for circadian clocks. Bull Math Biol 29(4):781–791

    Google Scholar 

  • Pavlidis T (1973) Biological oscillators: their mathematical analysis. Academic Press, London

    Google Scholar 

  • Perkel DH, Schulman JH, Bullock TH, Moore GP, Segundo JP (1964) Pacemaker neurons: effects of regularly spaced synaptic input. Science 145(3627):61–63

    Article  Google Scholar 

  • Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. In: Cold Spring Harbor symposia on quantitative biology, vol 25. Cold Spring Harbor Laboratory Press, New York, pp 159–184

  • Purcell O, Jain B, Karr JR, Covert MW, Lu TK (2013) Towards a whole-cell modeling approach for synthetic biology. Chaos 23(2):025112 (8 pages)

  • Qu Z, Garfinkel A, Chen PS, Weiss JN (2000) Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 102(14):1664–1670

    Article  Google Scholar 

  • Qu Z, Xie Y, Garfinkel A, Weiss JN (2010) T-wave alternans and arrhythmogenesis in cardiac diseases. Front Physiol 154 (15 pages)

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390

    Article  Google Scholar 

  • Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. Methods Neuronal Model 2:251–292

    Google Scholar 

  • Ritzenberg AL, Adam DR, Cohen RJ (1984) Period multupling-evidence for nonlinear behaviour of the canine heart. Nature 307:159–161

    Article  Google Scholar 

  • Rosenbaum DS, Albrecht P, Cohen RJ (1996) Predicting sudden cardiac death from T wave alternans on the surface electrogram. J Cardiovasc Electrophysiol 7:1095–1111

    Article  Google Scholar 

  • Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330:235–241

    Article  Google Scholar 

  • Schultheiss NW, Prinz AA, Butera RJ (2011) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, Berlin

    Google Scholar 

  • Shrier A, Dubarsky H, Rosengarten M, Guevara M, Nattel S, Glass L (1987) Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. Circulation 76(6):1196–1205

    Article  Google Scholar 

  • Smaill BH, Hunter PJ (2010) Computer modeling of electrical activation: from cellular dynamics to the whole heart. In: Cardiac electrophysiology methods and models. Springer, Berlin, pp 159–185

  • Sun J, Amellal F, Glass L, Billette J (1995) Alternans and period-doubling bifurcations in atrioventricular nodal conduction. J Theor Biol 173(1):79–91

    Article  Google Scholar 

  • Talajic M, Papadatos D, Villemaire C, Glass L, Nattel S (1991) A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. Circ Res 68(5):1280–1293

    Article  Google Scholar 

  • Toal SC, Farid TA, Selvaraj R, Chauhan VS, Masse S, Ivanov J, Harris L, Downar E, Franz MR, Nanthakumar K (2009) Short-term memory and restitution during ventricular fibrillation in human hearts: an in vivo study. Circ Arrhythm Electrophysiol 2(5):562–570

    Article  Google Scholar 

  • Tolkacheva E, Schaeffer D, Gauthier DJ, Krassowska W (2003) Condition for alternans and stability of the 1:1 response pattern in a “memory” model of paced cardiac dynamics. Phys Rev E 67(3):031904 (10 pages)

  • Wanzhen Z, Glass L, Shrier A (1992) The topology of phase response curves induced by single and paired stimuli in spontaneously oscillating chick heart cell aggregates. J Biol Rhythm 7(2):89–104

    Article  Google Scholar 

  • Wever R (1960) Possibilities of phase-control, demonstrated by an electronic model. In: Cold Spring Harbor symposia on quantitative biology, vol 25. Cold Spring Harbor Laboratory Press, New York, pp 197–206

  • Winfree AT (1970) Integrated view of resetting a circadian clock. J Theor Biol 28(3):327–374

    Article  Google Scholar 

  • Winfree AT (2000) The geometry of biological time, 2nd edn. Springer, New York

    Google Scholar 

  • Zeng W, Glass L, Shrier A (1991) Evolution of rhythms during periodic stimulation of embryonic chick heart cell aggregates. Circ Res 69(4):1022–1033

    Article  Google Scholar 

Download references

Acknowledgments

We thank NSERC, the Canadian Heart and Stroke Foundation, and CIHR for financial support. We thank M. R. Guevara for helpful comments, and also for the insightful contributions he made to the development of the ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Glass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glass, L., Shrier, A. Functional Characterization of Oscillatory and Excitable Media. Bull Math Biol 77, 782–795 (2015). https://doi.org/10.1007/s11538-014-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0015-y

Keywords

Navigation