Skip to main content

Advertisement

Log in

A Class of Pairwise Models for Epidemic Dynamics on Weighted Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study the SIS (susceptible–infected–susceptible) and SIR (susceptible–infected–removed) epidemic models on undirected, weighted networks by deriving pairwise-type approximate models coupled with individual-based network simulation. Two different types of theoretical/synthetic weighted network models are considered. Both start from non-weighted networks with fixed topology followed by the allocation of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise models are formulated for a general discrete distribution of weights, and these models are then used in conjunction with stochastic network simulations to evaluate the impact of different weight distributions on epidemic thresholds and dynamics in general. For the SIR model, the basic reproductive ratio R 0 is computed, and we show that (i) for both network models R 0 is maximised if all weights are equal, and (ii) when the two models are ‘equally-matched’, the networks with a random weight distribution give rise to a higher R 0 value. The models with different weight distributions are also used to explore the agreement between the pairwise and simulation models for different parameter combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans. Oxford: Oxford University Press.

    Google Scholar 

  • Ball, F., & Neal, P. (2008). Network epidemic models with two levels of mixing. Math. Biosci., 212, 69–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004a). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, 3747–3752.

    Article  Google Scholar 

  • Barrat, A., Barthélemy, M., & Vespignani, A. (2004b). Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett., 92, 228701.

    Article  Google Scholar 

  • Barrat, A., Barthélemy, M., & Vespignani, A. (2004c). Modeling the evolution of weighted networks. Phys. Rev. E, 70, 066149.

    Google Scholar 

  • Barrat, A., Barthélemy, M., & Vespignani, A. (2005). The effects of spatial constraints on the evolution of weighted complex networks. J. Stat. Mech., P05003.

  • Beutels, P., Shkedy, Z., Aerts, M., & Van Damme, P. (2006). Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol. Infect., 134, 1158–1166.

    Article  Google Scholar 

  • Blyuss, K. B., & Kyrychko, Y. N. (2005). On a basic model of a two-disease epidemic. Appl. Math. Comput., 160, 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Blyuss, K. B., & Kyrychko, Y. N. (2010). Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol., 72, 490–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: structure and dynamics. Phys. Rep., 424, 175–308.

    Article  MathSciNet  Google Scholar 

  • Britton, T., Deijfen, M., & Liljeros, F. (2011). A weighted configuration model and inhomogeneous epidemics. J. Stat. Phys., 145, 1368–1384.

    Article  MathSciNet  MATH  Google Scholar 

  • Britton, T., & Lindenstrand, D. (2012). Inhomogeneous epidemics on weighted networks. Math. Biosci., 260, 124–131.

    Article  Google Scholar 

  • Colizza, V., Barrat, A., Barthélemy, M., Valleron, A.-J., & Vespignani, A. (2007). Modelling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med., 4, 95–110.

    Article  Google Scholar 

  • Cooper, B. S., Pitman, R. J., Edmunds, W. J., & Gay, N. J. (2006). Delaying the international spread of pandemic influenza. PLoS Med., 3, e212.

    Article  Google Scholar 

  • Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., Ross, J. V., & Vernon, M. C. (2011). Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis., 2011, 284909.

    Google Scholar 

  • Deijfen, M. (2011). Epidemics and vaccination on weighted graphs. Math. Biosci., 232, 57–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: Wiley.

    Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0, in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: from biological nets to the Internet and WWW. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Eames, K. T. D. (2008). Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol., 73, 104–111.

    Article  MATH  Google Scholar 

  • Eames, K. T. D., & Keeling, M. J. (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. USA, 99, 13330–13335.

    Article  Google Scholar 

  • Eames, K. T. D., Read, J. M., & Edmunds, W. J. (2009). Epidemic prediction and control in weighted networks. Epidemics, 1, 70–76.

    Article  Google Scholar 

  • Edmunds, W. J., O’Callaghan, C. J., & Nokes, D. J. (1997). Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. R. Soc. Lond. B, Biol. Sci., 264, 949–957.

    Article  Google Scholar 

  • Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreak in realistic urban social networks. Nature, 429, 180–184.

    Article  Google Scholar 

  • Garlaschelli, D. (2009). The weighted random graph model. New J. Phys., 11, 073005.

    Article  Google Scholar 

  • Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton-Hadley, R., & Wint, W. (2005). Cattle movements and bovine tuberculosis in Great Britain. Nature, 435, 491–496.

    Article  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.

    Article  Google Scholar 

  • Hatzopoulos, V., Taylor, M., Simon, P. L., & Kiss, I. Z. (2011). Multiple sources and routes of information transmission: implications for epidemic dynamics. Math. Biosci., 231, 197–209.

    Article  MathSciNet  MATH  Google Scholar 

  • House, T., Davies, G., Danon, L., & Keeling, M. J. (2009). A motif-based approach to network epidemics. Bull. Math. Biol., 71, 1693–1706.

    Article  MathSciNet  MATH  Google Scholar 

  • House, T., & Keeling, M. J. (2011). Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface, 8, 67–73.

    Article  Google Scholar 

  • Joo, J., & Lebowitz, J. L. (2004). Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation. Phys. Rev. E, 69, 066105.

    MathSciNet  Google Scholar 

  • Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B, Biol. Sci., 266, 859–867.

    Article  Google Scholar 

  • Keeling, M. J., & Eames, K. T. D. (2005). Networks and epidemic models. J. R. Soc. Interface, 2, 295–307.

    Article  Google Scholar 

  • Keeling, M. J., & Rohani, P. (2007). Modeling infectious diseases in humans and animals. Princeton: Princeton University Press.

    Google Scholar 

  • Kiss, I. Z., Green, D. M., & Kao, R. R. (2006). The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci., 203, 124–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiss, I. Z., Cassell, J., Recker, M., & Simon, P. L. (2010). The impact of information transmission on epidemic outbreaks. Math. Biosci., 225, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., & Chen, G. (2004). A comprehensive weighted evolving network model. Physica A, 343, 288–294.

    Google Scholar 

  • Moreno, Y., Pastor-Satorras, R., & Vespignani, A. (2002). Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B, 26, 521–529.

    Google Scholar 

  • Newman, M. E. J. (2002). Spread of epidemic disease on networks. Phys. Rev. E, 66, 016128.

    Article  MathSciNet  Google Scholar 

  • Olinky, R., & Stone, L. (2004). Unexpected epidemic thresholds in heterogeneous networks: the role of disease transmission. Phys. Rev. E, 70, 030902(R).

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2001a). Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86, 3200–3202.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2001b). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E, 63, 066117.

    Article  Google Scholar 

  • Rand, D. A. (1999). Correlation equations and pair approximations for spatial ecologies. Quart. - Cent. Wiskd. Inform., 12, 329–368.

    MATH  Google Scholar 

  • Read, J. M., Eames, K. T. D., & Edmunds, W. J. (2008). Dynamic social networks and the implications for the spread of infectious disease. J. R. Soc. Interface, 5, 1001–1007.

    Article  Google Scholar 

  • Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316, 1298–1301.

    Article  Google Scholar 

  • Riley, S., & Ferguson, N. M. (2006). Smallpox transmission and control: spatial dynamics in great Britain. Proc. Natl. Acad. Sci. USA, 103, 12637–12642.

    Article  Google Scholar 

  • Sharkey, K. J., Fernandez, C., Morgan, K. L., Peeler, E., Thrush, M., Turnbull, J. F., & Bowers, R. G. (2006). Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol., 53, 61–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, S., & Zhang, C. (2004). Weighted competition scale-free network. Phys. Rev. E, 70, 066127.

    Google Scholar 

  • Yang, Z., & Zhou, T. (2012). Epidemic spreading in weighted networks: an edge-based mean-field solution. Phys. Rev. E, 85, 056106.

    MathSciNet  Google Scholar 

  • Yang, R., Zhou, T., Xie, Y.-B., Lai, Y.-C., & Wang, B.-H. (2008). Optimal contact process on complex networks. Phys. Rev. E, 78, 066109.

    Article  Google Scholar 

Download references

Acknowledgements

P. Rattana acknowledges funding for her Ph.D. studies from the Ministry of Science and Technology, Thailand. K.T.D. Eames is funded by a Career Development Fellowship award from the National Institute for Health Research. I.Z. Kiss acknowledges useful discussions with Professor Frank Ball on aspects of the epidemic threshold calculation. The authors wish to thank the two anonymous reviewers for their useful comments and suggestions which have contributed to improving the structure and clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Z. Kiss.

Appendices

Appendix A: Reducing the Weighted Pairwise Models to the Un-weighted Equivalents

We start from the system

(14)

where m=1,2,…,M. To close this system of equations at the level of pairs, we use the approximations

$$[ABC]_{mn}=\frac{k-1}{k}\frac{[AB]_{m}[BC]_{n}}{[B]}. $$

To reduce these equations to the standard pairwise model for un-weighted networks, we use the fact that \(\sum_{m=1}^{M} {[AB]_{m}} = [AB]\) for A,B∈{S,I} and aim to derive the evolution equation for [AB]. Assuming that all weights are equal to W, the following relation holds:

where the summations of the triples can be resolved as follows:

Using the same argument for all other triples, the pairwise model for weighted networks with all weights being equal (without loss of generality W=1) reduces to the classic pairwise model, that is

A similar argument holds for the pairwise model on weighted networks with SIR dynamics.

Appendix B: Proof of Theorem 1

We illustrate the main steps needed to complete the proof of Theorem 1. This revolves around starting from the inequality itself and showing via a series of algebraic manipulations that it is equivalent to a simpler inequality that holds trivially. Upon using that p 1 k=k 1, p 2 k=k 2, and p 2+p 1=1, the original inequality can be rearranged to give

$$ \sqrt{\bigl[(k_1-1)r_1-(k_2-1)r_2 \bigr]^2+4k_1k_2r_1r_2} \le(k_1-1)r_1+(k_2-1)r_2+2r_1p_2+2r_2p_1. $$
(15)

Based on the assumptions of the theorem, the right-hand side is positive, and thus this inequality is equivalent to the one where both the left- and right-hand sides are squared. Combined with the fact that p 2=1−p 1, after a series of simplifications and factorisations this inequality can be recast as

$$ 4p_1(1-p_1) \bigl(r_1^2+r_2^2 \bigr)+8kp_1(1-p_1)r_1r_2 \le 4kp_1(1-p_1) \bigl(r_1^2+r_2^2 \bigr)+8p_1(1-p_1)r_1r_2, $$
(16)

which can be further simplified to

$$ 4p_1(1-p_1) (r_1-r_2)^2(k-1) \ge0, $$
(17)

which holds trivially and thus completes the proof. We note that in the strictest mathematical sense the condition of the theorem should be (k 1−1)r 1+(k 2−1)r 2+2r 1 p 2+2r 2 p 1≥0. This holds if the current assumptions are observed since these are stronger but follow from a practical reasoning whereby for the network with fixed weight distribution, a node should have at least one link with every possible weight type.

Appendix C: Proof of Theorem 2

First, we show that \(R_{0}^{1}\) is maximised when w 1=w 2=W. \(R_{0}^{1}\) can be rewritten to give

(18)

Maximising this given the constraint w 1 p 1+w 2(1−p 1)=W can be achieved by considering \(R_{0}^{1}\) as a function of the two weights and incorporating the constraint into it via the Lagrange multiplier method. Hence, we define a new function f(w 1,w 2,λ) as follows:

Finding the extrema of this functions leads to a system of three equations

Expressing λ from the first two equations and equating these two expressions yields

$$ \frac{(k-1)\tau\gamma}{(\tau{w_{1}}+\gamma)^2} = \frac{(k-1)\tau\gamma }{(\tau{w_{2}}+\gamma)^2}. $$
(19)

Therefore,

$$ w_{1} = w_{2} = W, $$
(20)

and it is straightforward to confirm that this is a maximum.

Performing the same analysis for \(R_{0}^{2}\) is possible but it is more tedious. Instead, we propose a more elegant argument to show that \(R_{0}^{2}\) under the constraint of constant total link weight achieves its maximum when w 1=w 2=W. The argument starts by considering \(R_{0}^{2}\) when w 1=w 2=W. In this case, and using that r 2=r 1=r=τW/(τW+γ) we can write:

However, it is known from Theorem 1 that \(R_{0}^{2} \leq R_{0}^{1}\), and we have previously shown that \(R_{0}^{1}\) under the present constraint achieves its maximum when w 1=w 2=W, and its maximum is equal to (k−1)r. All the above can be written as

$$ R_0^2 \leq R_{0}^1 \leq(k-1)r. $$
(21)

Now taking into consideration that \(R^{2\ast}_{0}=(k-1)r\), the inequality above can be written as

$$ R_0^2 \leq R_{0}^1 \leq(k-1)r =R^{2\ast}_0, $$
(22)

and this concludes the proof.

Appendix D: The R 0-Like Threshold R

Let us start from the evolution equation for [I](t),

where \(\lambda_{1}= \frac{[SI]_{1}}{[I]}\) and \(\lambda_{2}=\frac {[SI]_{2}}{[I]}\), and let R be defined as

$$ R = \frac{\tau{w_{1}}{\lambda_{1}}+\tau{w_{2}}{\lambda _{2}}}{\gamma}. $$
(23)

Following the method outlined by Keeling (1999) and Eames (2008), we calculate the early quasi-equilibrium values of λ 1,2 as follows:

$$\begin{aligned} \dot{\lambda}_{1} &= 0\quad {\Leftrightarrow}\quad [\dot{SI}]_{1}[I] = \dot {[I]}[SI]_{1}, \\ \dot{\lambda}_{2} &= 0\quad {\Leftrightarrow}\quad [\dot{SI}]_{2}[I] = [\dot{I}]][SI]_{2}. \end{aligned} $$

Upon using the pairwise equations and the closure, consider \([\dot {S}I]_{1}[I] = [\dot{I}][SI]_{1}\):

(24)

Using the classical closure

$$\begin{aligned} {[ABC]}_{12}&=\frac{k-1}{k}\frac{[AB]_{1}[BC]_{2}}{[B]} , \\ {[ABC]}_{21}&=\frac{k-1}{k}\frac{[AB]_{2}[BC]_{1}}{[B]}, \end{aligned} $$

and making the substitution: [SI]1=λ 1[I], [SI]2=λ 2[I], [I]≪1, [S]≈N, [SS]1kNp 1, [SS]2kN(1−p 1) together with γR=τw 1 λ 1+τw 2 λ 2, we have

$$({\tau}w_{1}\lambda_{1}+{\tau}w_{2} \lambda_{2})kp_{1}-({\tau}w_{1} \lambda_{1}+{\tau}w_{2}\lambda_{2})p_{1}-({ \tau}w_{1}\lambda_{1}+{\tau}w_{2} \lambda_{2})\lambda_{1}-\tau{w_{1}} \lambda_{1}=0, $$

which can be solved for λ 1 to give

$$\lambda_{1} = \frac{\gamma{(k-1)}{p_{1}}{R}}{\tau{w_{1}}+\gamma{R}}. $$

Similarly, λ 2 can be found as

(25)

Substituting the expressions for λ 1,2 into the original equation for R yields

$$R = \frac{A+B+\sqrt{(A+B)^2+4\tau^2w_{1}w_{2}(k-2)}}{2\gamma}, $$

where A=τw 1[(k−1)p 1−1] and B=τw 2[(k−1)p 2−1]. If we define

$$R_{1} = \frac{\tau{w_{1}}[(k-1)p_{1}-1]}{\gamma},\quad \mbox{and} \quad R_{2} = \frac{\tau {w_{2}}[(k-1)p_{2}-1]}{\gamma}, $$

the expression simplifies to

$$R = \frac{R_{1}+R_{2}+\sqrt{(R_{1}+R_{2})^2+4R_{1}R_{2}Q}}{2}, $$

where \(Q = \frac{(k-2)}{[(k-1)p_{1}-1][(k-1)p_{2}-1]}\).

Substituting the modified closure

into Eq. (24) and making further substitution: [SI]1=λ 1[I], [SI]2=λ 2[I], [I]≪1, [S]≈N, [SS]1k 1 N, [SS]2k 2 N, we have

$$({\tau}w_{1}\lambda_{1}+{\tau}w_{2} \lambda_{2})k_{1}-({\tau}w_{1} \lambda_{1}+{\tau}w_{2}\lambda_{2}) \lambda_{1}-2\tau w_1 \lambda_1 =0 \quad {\Longrightarrow}\quad \lambda_{1} = \frac{\gamma{k_{1}}{R}}{2\tau {w_{1}}+\gamma{R}}. $$

Similarly, the equation \([\dot{SI}]_{2}{[I]} = [\dot{I}][SI]_{2}\) yields

$$\lambda_{2}= \frac{\gamma{k_{2}}{R}}{2\tau{w_{2}}+\gamma{R}}. $$

Substituting these expressions for λ 1,2 into Eq. (23), we have

If we define

$$R_{1} = \frac{\tau{w_{1}}(k_{1}-2)}{\gamma},\qquad R_{2} = \frac{\tau{w_{2}}(k_{2}-2)}{\gamma}, $$

the above expression for R simplifies to

$$ R = \frac{R_{1}+R_{2}+\sqrt{(R_{1}+R_{2})^2+4R_{1}R_{2}(Q-1)}}{2}, $$
(26)

where

$$Q = \frac{k_{1} k_{2}}{(k_{1}-2)(k_{2}-2)}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattana, P., Blyuss, K.B., Eames, K.T.D. et al. A Class of Pairwise Models for Epidemic Dynamics on Weighted Networks. Bull Math Biol 75, 466–490 (2013). https://doi.org/10.1007/s11538-013-9816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9816-7

Keywords

Navigation