Skip to main content

Advertisement

Log in

Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multiple transmission pathways exist for many waterborne diseases, including cholera, Giardia, Cryptosporidium, and Campylobacter. Theoretical work exploring the effects of multiple transmission pathways on disease dynamics is incomplete. Here, we consider a simple ODE model that extends the classical SIR framework by adding a compartment (W) that tracks pathogen concentration in the water. Infected individuals shed pathogen into the water compartment, and new infections arise both through exposure to contaminated water, as well as by the classical SIR person–person transmission pathway. We compute the basic reproductive number (ℛ0), epidemic growth rate, and final outbreak size for the resulting “SIWR” model, and examine how these fundamental quantities depend upon the transmission parameters for the different pathways. We prove that the endemic disease equilibrium for the SIWR model is globally stable. We identify the pathogen decay rate in the water compartment as a key parameter determining when the distinction between the different transmission routes in the SIWR model is important. When the decay rate is slow, using an SIR model rather than the SIWR model can lead to under-estimates of the basic reproductive number and over-estimates of the infectious period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, M.D., Neumann, N.F., 2007. Giardia intestinalis: new insights on an old pathogen. Rev. Med. Microbiol. 18(2), 35–42.

    Google Scholar 

  • Anderson, R., Watson, R., 1980. On the spread of a disease with gamma distributed latent and infectious periods. Biometrika 67(1), 191–198.

    Article  MATH  Google Scholar 

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.

    Google Scholar 

  • Ashbolt, N., 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198, 229–238.

    Article  Google Scholar 

  • Auld, H., MacIver, D., Klaassen, J., 2004. Heavy rainfall and waterborne disease outbreaks: the Walkerton example. J. Toxicol. Environ. Health A 67, 1879–1887.

    Article  Google Scholar 

  • Barker, J., Vipond, I., Bloomfield, S., 2004. Effects of cleaning and disinfection in reducing the spread of norovirus contamination via environmental surfaces. J. Hosp. Infect. 58, 42–49.

    Article  Google Scholar 

  • Brookhart, M.A., Hubbard, A., van der Laan, M.J., Colford, J., Eisenberg, J.N.S., 2002. Statistical estimation of parameters in a disease transmission model: analysis of a Cryptosporidium outbreak. Stat. Med. 21(23), 3627–3638.

    Article  Google Scholar 

  • Butzler, J., 2004. Campylobacter, from obscurity to celebrity. Clin. Microbiol. Infect. 10(10), 868–876.

    Article  Google Scholar 

  • Codeco, C., 2001. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1.

  • Curriero, F., Patz, J., Rose, J., Lele, S., 2001. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am. J. Public Health 91, 1194–1199.

    Article  Google Scholar 

  • Cvjetanovic, B., Grab, B., Uemura, K., 1978. Dynamics of acute bacterial diseases, epidemiological models and their application to public health. Bull. World Health Organ. 56(S1), 1–143.

    Google Scholar 

  • Duizer, E., Koopmans, M., 2006. Tracking foodborne viruses: lessons from noroviruses. In: Motarjemi, Y., Adam, M. (Eds.), Emerging Foodborne Pathogens, pp. 77–110. CRC Press, Boca Raton.

    Google Scholar 

  • Eisenberg, J.N., Brookhart, M., Rice, G., Brown, M., Colford, J., 2002. Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect. 110(8), 783–790.

    Google Scholar 

  • Eisenberg, J.N., Lewis, B.L., Porco, T.C., Hubbard, A.H., Colford, J.M. Jr., 2003. Bias due to secondary transmission in estimation of attributable risk from intervention trials. Epidemiology 14(4), 442–450.

    Google Scholar 

  • Faruque, S., Albert, M., Mekalanos, J., 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62(4), 1301–1314.

    Google Scholar 

  • Faruque, S., Islam, M., Ahmad, Q., Faruque, A.S.G., Sack, D., Nair, G., Mekalanos, J., 2005. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc. Natl. Acad. Sci. USA 102(17), 6119–6124.

    Article  Google Scholar 

  • Fenichel, N., 1971. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21(3), 193–226.

    Article  MATH  MathSciNet  Google Scholar 

  • Flanagan, P., 1992. Giardia—diagnosis, clinical course and epidemiology. A review. Epidemiol. Infect. 109(1), 1–22.

    MathSciNet  Google Scholar 

  • Ford, T., 1999. Microbiological safety of drinking water: United States and global perspectives. Environ. Health Perspect. 107(Suppl. 1), 191–206.

    Article  Google Scholar 

  • Gerba, C., Rose, J., Haas, C., Crabtree, K., 1996. Waterborne rotavirus: a risk assessment. Water Res. 30, 2929–2940.

    Article  Google Scholar 

  • Goh, K., Teo, S., Lam, S., Ling, M., 1990. Person-to-person transmission of cholera in a psychiatric hospital. J. Infect. 20(3), 193–2000.

    Article  Google Scholar 

  • Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin.

    MATH  Google Scholar 

  • Hartley, D., Morris, J., Smith, D., 2006. Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3, 63–69.

    Article  Google Scholar 

  • Hirsch, M.W., Smale, S., 1974. Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York.

    MATH  Google Scholar 

  • Hunter, P., Waite, M., Ronchi, E. (Eds.), 2003. Drinking Water and Infectious Disease: Establishing the Links. CRC Press, Boca Raton.

    Google Scholar 

  • Hyman, J.M., Li, J., Ann Stanley, E., 1999. The differential infectivity and staged progression models for the transmission of HIV. Math. Biosci. 155, 77–109.

    Article  MATH  Google Scholar 

  • Jensen, M., Faruque, S., Mekalanos, J., Levin, B., 2006. Modeling the role of bacteriophage in the control of cholera outbreaks. Proc. Natl. Acad. Sci. USA 103(12), 4652–4657.

    Article  Google Scholar 

  • Jones, C.K., 1995. Geometric singular perturbation theory. In: Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin.

    Google Scholar 

  • Jones, K., 2001. Campylobacters in water, sewage and the environment. J. Appl. Microbiol. 90(S6), 68S–79S.

    Article  Google Scholar 

  • Karanis, P., Kourenti, C., Smith, H., 2007. Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J. Water Health 5(1), 1–38.

    Article  Google Scholar 

  • Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721.

    Article  Google Scholar 

  • King, A.A., Ionides, E.L., Pascual, M., Bouma, M.J., 2008. Inapparent infections and cholera dynamics. Nature 454, 877–880.

    Article  Google Scholar 

  • King, B., Monis, P., 2007. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 134, 309–323.

    Article  Google Scholar 

  • Koelle, K., Pascual, M., Yunus, M., 2005. Pathogen adaptation to seasonal forcing and climate change. Proc. R. Soc. Lond. B 272, 971–977.

    Article  Google Scholar 

  • Koelle, K., Pascual, M., Yunus, M., 2006. Serotype cycles in cholera dynamics. Proc. R. Soc. Lond. B 273, 2879–2886.

    Article  Google Scholar 

  • Korobeinikov, A., 2004. Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol. 21, 75–83.

    Article  MATH  Google Scholar 

  • Korobeinikov, A., Wake, G., 2002. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–961.

    Article  MATH  MathSciNet  Google Scholar 

  • LaSalle, J., Lefschetz, S., 1961. Stability by Liapunov’s Direct Method. Academic Press, New York.

    Google Scholar 

  • Leclerc, H., Schwartzbrod, L., Dei-Cas, E., 2002. Microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 28(4), 371–409.

    Article  Google Scholar 

  • Ma, J., Earn, D., 2006. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68, 679–702.

    Article  MathSciNet  Google Scholar 

  • Marshall, M., Naumovitz, D., Ortega, Y., Sterling, C., 1997. Waterborne protozoan pathogens. Clin. Microbiol. Rev. 10(1), 67–85.

    Google Scholar 

  • Mckay, M., Beckman, R., Conover, W., 1979. Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245.

    Article  MATH  MathSciNet  Google Scholar 

  • Nasser, A., 1994. Prevalence and fate of hepatitis A virus in water. Crit. Rev. Environ. Sci. Technol. 24(4), 281–323.

    Article  Google Scholar 

  • Nelder, J., Mead, R., 1965. A simplex method for function minimization. Comput. J. 7, 308–313.

    MATH  Google Scholar 

  • Pascual, M., Rodo, X., Ellner, S.P., Colwell, R., Bouma, M.J., 2000. Cholera dynamics and El Niño-Southern oscillation. Science 289, 1766–1769.

    Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numeric Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York.

    Google Scholar 

  • Prüss-Üstün, A., Bos, R., Gore, F., Bartram, J., 2008. Safer Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health. World Health Organization, Geneva.

    Google Scholar 

  • Robertson, L., Campbell, A., Smith, H., 1992. Survival of Cryptosporidium oocysts under various environmental pressures. Appl. Environ. Microbiol. 58, 3494–3500.

    Google Scholar 

  • Rollins, D., Colwell, R., 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52, 531–538.

    Google Scholar 

  • Rose, J., 1997. Environmental ecology of Cryptosporidium and public health implications. Annu. Rev. Public Health 18, 135–161.

    Article  Google Scholar 

  • Sack, D., Sack, R., Nair, G., Siddique, A., 2004. Cholera. Lancet 363, 223–233.

    Article  Google Scholar 

  • Saltelli, A., Chan, K., Scott, E., 2000. Sensitivity Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Schuster, C., Ellis, A., Robertson, W., Charron, D., 2005. Infectious disease outbreaks related to drinking water in Canada, 1974–2001. Can. J. Public Health 96(4), 254–258.

    Google Scholar 

  • Segel, L., 1988. On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.

    MATH  MathSciNet  Google Scholar 

  • Snow, J., 1936. Snow on Cholera: Being a Reprint of Two Papers. The Commonwealth Fund, New York.

    Google Scholar 

  • Tamplin, M., Gauzens, A., Huq, A., Sack, D., Colwell, R., 1990. Attachment of Vibrio cholerae serogroup-O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56(6), 1977–1980.

    Google Scholar 

  • Thomas, C., Hill, D., Mabey, M., 1999. Evaluation of the effect of temperature and nutrients on the survival of Campylobacter spp. in water microcosms. J. Appl. Microbiol. 86(6), 1024–1032.

    Article  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Wagner, B.G., Earn, D., 2010. Population dynamics of live-attenuated virus vaccines. Theor. Popul. Biol., in press.

  • Wallinga, J., Lipsitch, M., 2007. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. B 274, 599–604.

    Article  Google Scholar 

  • WHO, 2009. Cholera: global surveillance summary, 2008. Wkly. Epidemiol. Rec. 84, 309–324.

    Google Scholar 

  • Wu, R., 1999. Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Mar. Pollut. Bull. 39, 11–22.

    Article  Google Scholar 

  • Xu, H., Roberts, N., Singleton, F., Attwell, R., Grimes, D., Colwell, R., 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Tien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, J.H., Earn, D.J.D. Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model. Bull. Math. Biol. 72, 1506–1533 (2010). https://doi.org/10.1007/s11538-010-9507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9507-6

Keywords

Navigation