Skip to main content
Log in

Short-term QT interval variability in patients with coronary artery disease and congestive heart failure: a comparison with healthy control subjects

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study aimed to test how different QT interval variability (QTV) indices change in patients with coronary artery disease (CAD) and congestive heart failure (CHF). Twenty-nine healthy volunteers, 29 age-matched CAD patients, and 20 age-matched CHF patients were studied. QT time series were derived from 5-min resting lead-II electrocardiogram (ECG). Time domain indices [mean, SD, and QT variability index (QTVI)], frequency-domain indices (LF and HF), and nonlinear indices [sample entropy (SampEn), permutation entropy (PE), and dynamical patterns] were calculated. In order to account for possible influence of heart rate (HR) on QTV, all the calculations except QTVI were repeated on HR-corrected QT time series (QTc) using three correction methods (i.e., Bazett, Fridericia, and Framingham method). Results showed that CHF patients exhibited increased mean, increased SD, increased LF and HF, decreased T-wave amplitude, increased QTVI, and decreased PE, while showed no significant changes in SampEn. Interestingly, CHF patients also showed significantly changed distribution of the dynamical patterns with less monotonously changing patterns while more fluctuated patterns. In CAD group, only QTVI was found significantly increased as compared with healthy controls. Results after HR correction were in common with those before HR correction except for QTc based on Bazett correction.

Fig. The framework of this paper. The arrows show the sequential analysis of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anastasiou-Nana MI, Nanas JN, Karagounis LA, Tsagalou EP, Alexopoulos GE, Toumanidis S, Gerali S, Stamatelopoulos SF, Moulopoulos SD (2000) Relation of dispersion of QRS and QT in patients with advanced congestive heart failure to cardiac and sudden death mortality. Am J Cardiol 85:1212–1217

    Article  CAS  PubMed  Google Scholar 

  2. Baer K-J, Koschke M, Boettger MK, Berger S, Kabisch A, Sauer H, Voss A, Yeragani VK (2007) Acute psychosis leads to increased QT variability in patients suffering from schizophrenia. Schizophr Res 95:115–123. https://doi.org/10.1016/j.schres.2007.05.034

    Article  Google Scholar 

  3. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174102

    Article  CAS  PubMed  Google Scholar 

  4. Baumert M, Czippelova B, Ganesan A, Schmidt M, Zaunseder S, Javorka M (2014) Entropy analysis of RR and QT interval variability during orthostatic and mental stress in healthy subjects. Entropy 16:6384–6393. https://doi.org/10.3390/e16126384

    Article  Google Scholar 

  5. Baumert M, Czippelova B, Porta A, Javorka M (2013) Decoupling of QT interval variability from heart rate variability with ageing. Physiol Meas 34:1435–1448. https://doi.org/10.1088/0967-3334/34/11/1435

    Article  PubMed  Google Scholar 

  6. Baumert M, Javorka M, Seeck A, Faber R, Sanders P, Voss A (2012) Multiscale entropy and detrended fluctuation analysis of QT interval and heart rate variability during normal pregnancy. Comput Biol Med 42:347–352. https://doi.org/10.1016/j.compbiomed.2011.03.019

    Article  PubMed  Google Scholar 

  7. Baumert M, Porta A, Vos MA, Malik M, Couderc J-P, Laguna P, Piccirillo G, Smith GL, Tereshchenko LG, Volders PGA (2016) QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European heart rhythm association jointly with the ESC working group on cardiac cellular electrophysiology. Europace 18:925–944. https://doi.org/10.1093/europace/euv405

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baumert M, Schlaich MP, Nalivaiko E, Lambert E, Sari CI, Kaye DM, Elser MD, Sanders P, Lambert G (2011) Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am J Phys Heart Circ Phys 300:H1412–H1417

    CAS  Google Scholar 

  9. Berger RD (2009) QT interval variability: is it a measure of autonomic activity? J Am Coll Cardiol 54:851–852. doi:https://doi.org/10.1016/j.jacc.2009.06.007

  10. Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF (1997) Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96:1557–1565

    Article  CAS  PubMed  Google Scholar 

  11. Brooksby P, Batin P, Nolan J, Lindsay S, Andrews R, Mullen M, Baig W, Flapan A, Prescott R, Neilson J (1999) The relationship between QT intervals and mortality in ambulant patients with chronic heart failure. The United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-HEART). Eur Heart J 20:1335–1341

    Article  CAS  PubMed  Google Scholar 

  12. Carney RM, Freedland KE, Stein PK, Watkins LL, Catellier D, Jaffe AS, Yeragani VK (2003) Effects of depression on QT interval variability after myocardial infarction. Psychosom Med 65:177–180. https://doi.org/10.1097/01.psy.0000033129.21715.4b

    Article  PubMed  Google Scholar 

  13. Cohen J (1988) Statistical power analysis for the behavioral sciences Lawrence Earlbaum Associates. Hillsdale, NJ:20–26

  14. Davey P (1999) QT interval measurement: Q to TApex or Q to TEnd? J Intern Med 246:145–149

    Article  CAS  PubMed  Google Scholar 

  15. Davey P (2000) QT interval and mortality from coronary artery disease. Prog Cardiovasc Dis 42:359–384

    Article  CAS  PubMed  Google Scholar 

  16. Dobson CP, La Rovere MT, Pinna GD, Goldstein R, Olsen C, Bernardinangeli M, Veniani M, Midi P, Tavazzi L, Haigney M, Investigators G-H (2011) QT variability index on 24-hour Holter independently predicts mortality in patients with heart failure: analysis of Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca (GISSI-HF) trial. Heart Rhythm 8:1237–1242. https://doi.org/10.1016/j.hrthm.2011.03.055

    Article  PubMed  Google Scholar 

  17. Goldberger JJ, Ahmed MW, Parker MA, Kadish AH (1994) Dissociation of heart rate variability from parasympathetic tone. Am J Phys Heart Circ Phys 266:H2152–H2157

    CAS  Google Scholar 

  18. Haigney MC, Zareba W, Gentlesk PJ, Goldstein RE, Illovsky M, McNitt S, Andrews ML, Moss AJ, Investigators MI (2004) QT interval variability and spontaneous ventricular tachycardia or fibrillation in the multicenter automatic defibrillator implantation trial (MADIT) II patients. J Am Coll Cardiol 44:1481–1487

    Article  PubMed  Google Scholar 

  19. Hasan MA, Abbott D, Baumert M (2012) Relation between beat-to-beat QT interval variability and T-wave amplitude in healthy subjects. Ann Noninvasive Electrocardiol 17:195–203

    Article  PubMed  Google Scholar 

  20. Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM, Malik M (2013) Relationship of QT interval variability to heart rate and RR interval variability. J Electrocardiol 46:591–596

    Article  PubMed  Google Scholar 

  21. Lewis M, Short A (2007) Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiol Meas 28:731

    Article  CAS  PubMed  Google Scholar 

  22. Li P, Liu C, Li K, Zheng D, Liu C, Hou Y (2015) Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & Biological Engineering & Computing 53:77–87. https://doi.org/10.1007/s11517-014-1216-0

    Article  Google Scholar 

  23. Li P, Liu C, Wang X, Zheng D, Li Y, Liu C (2014) A low-complexity data-adaptive approach for premature ventricular contraction recognition. SIViP 8:111–120

    Article  Google Scholar 

  24. Liu C-Y, Li L-P, Zhao L, Zheng D-C, Li P, Liu C-C (2012) A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in RR sequences. J Med Biol Eng 32:245–249

    Article  Google Scholar 

  25. Luo S, Michler K, Johnston P, Macfarlane PW (2004) A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J Electrocardiol 37:81–90

    Article  PubMed  Google Scholar 

  26. Makowiec D, Kaczkowska A, Wejer D, Żarczyńska-Buchowiecka M, Struzik ZR (2015) Entropic measures of complexity of short-term dynamics of nocturnal heartbeats in an aging population. Entropy 17:1253–1272

    Article  Google Scholar 

  27. Mayer CC, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S (2014) Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC bioinformatics 15:S2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Niemeijer MN, van den Berg ME, Eijgelsheim M, van Herpen G, Stricker BH, Kors JA, Rijnbeek PR (2014) Short-term QT variability markers for the prediction of ventricular arrhythmias and sudden cardiac death: a systematic review. Heart 100:1831–1836. https://doi.org/10.1136/heartjnl-2014-305671

    Article  PubMed  Google Scholar 

  29. Orosz A, Baczko I, Nyiraty S, Korei AE, Putz Z, Takacs R, Nemes A, Varkonyi TT, Balogh L, Abraham G, Kempler P, Papp JG, Varro A, Lengyel C (2017) Increased short-term beat-to-beat QT interval variability in patients with Imparied glucose tolerance. Front Endocrinol 8. https://doi.org/10.3389/fendo.2017.00129

  30. Piccirillo G, Magnanti M, Matera S, Di Carlo S, De Laurentis T, Torrini A, Marchitto N, Ricci R, Magrí D (2006) Age and QT variability index during free breathing, controlled breathing and tilt in patients with chronic heart failure and healthy control subjects. Transl Res 148:72–78

    Article  PubMed  Google Scholar 

  31. Piccirillo G, Magri D, Ogawa M, Song J, Chong VJ, Han S, Joung B, Choi E-K, Hwang S, Chen LS, Lin S-F, Chen P-S (2009) Autonomic nervous system activity measured directly and QT interval variability in normal and pacing-induced tachycardia heart failure dogs. J Am Coll Cardiol 54:840–850. https://doi.org/10.1016/j.jacc.2009.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S (2001) Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng 48:1282–1291

    Article  CAS  PubMed  Google Scholar 

  33. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278:H2039–H2049

    CAS  Google Scholar 

  34. Schmidt M, Baumert M, Malberg H, Zaunseder S (2016) T wave amplitude correction of QT interval variability for improved repolarization lability measurement. Front Physiol 7:216

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schouten EG, Dekker JM, Meppelink P, Kok FJ, Vandenbroucke JP, Pool J (1991) QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation 84:1516–1523

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan GM, Feinn R (2012) Using effect size—or why the P value is not enough. Journal of graduate medical education 4:279–282

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vrtovec B, Delgado R, Zewail A, Thomas CD, Richartz BM, Radovancevic B (2003) Prolonged QTc interval and high B-type natriuretic peptide levels together predict mortality in patients with advanced heart failure. Circulation 107:1764–1769

    Article  PubMed  Google Scholar 

  38. Vrtovec B, Starc V, Starc R (2000) Beat-to-beat QT interval variability in coronary patients. J Electrocardiol 33:119–125

    Article  CAS  PubMed  Google Scholar 

  39. Wejer D, Graff B, Makowiec D, Budrejko S, Struzik ZR (2017) Complexity of cardiovascular rhythms during head-up tilt test by entropy of patterns. Physiol Meas 38:819

    Article  PubMed  Google Scholar 

  40. Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N (2013) The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 41:349–365

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the volunteers and researchers who participated in this study.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 61471223, 61601263, 61501280), Shandong Provincial Natural Science Foundation of China (No. ZR2015FQ016), and the Excellent Young Scientist Awarded Foundation of Shandong Province (No. BS2012DX019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Liu.

Ethics declarations

Informed consents were obtained from all subjects. The study was approved by the Clinical Ethics Committee of Shandong Provincial Qianfoshan Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, P., Wang, X. et al. Short-term QT interval variability in patients with coronary artery disease and congestive heart failure: a comparison with healthy control subjects. Med Biol Eng Comput 57, 389–400 (2019). https://doi.org/10.1007/s11517-018-1870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1870-8

Keywords

Navigation